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ABSTRACT

AN OBJECT-ORIENTED ALGORITHMIC LABORATORY FOR ORDERING SPARSE
MATRICES

Gary Karl Kumfert
Old Dominion University 2000

Advisor: Alex Pothen

We focus on two known NP-hard problems that have applications in sparse matrix computations:

the envelope/wavefront reduction problem and the fill reduction problem. Envelope/wavefront

reducing orderings have a wide range of applications including profile and frontal solvers, incom-

plete factorization preconditioning, graph reordering for cache performance, gene sequencing, and

spatial databases. Fill reducing orderings are generally limited to -- but an inextricable part of

-- sparse matrix factorization.

Our major contribution to this field is the design of new and improved heuristics for these

NP-hard probletns and their efficient implementation in a robust, cross-platform, object-oriented

software package. In this body of research, we (1) examine current ordering algorithms, analyze

their asymptotic complexity, and characterize their behavior in model problems, (2) introduce

new and improved algorithms that address deficiencies found in previous heuristics, (3) implement

an object-oriented library of these algorithms in a robust, modular fashion without significant

loss of efficiency, and (4) extend our algorithms and software to address both generalized and

constrained problems. We stress that the major contribution is the algorithms and the imple-

mentation; the whole being greater than the sum of its parts.

The initial motivation for implementing our algorithms in object-oriented software was to

manage the inherent complexity. During our research came the realization that the object-

oriented implementation enabled new possibilities tbr augmented algorithms that would not have

been as natural to generalize from a procedural implementation. Some extensions are con-

structed from a family of related algorithmic components, thereby creating a poly-algorithm
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that can adapt its strategy to the properties of the specific problem instance dynamically. Other

algorithms are tailored for special constraints by aggregating algorithmic components and having

them collaboratively generate the global ordering.

Our software laboratory, %pi~tSIe," implements state-of-the-art ordering algorithms for sparse

matrices and graphs. We have used it to examine and augment the behavior of existing algorithms

and test new ones. Its 40,000+ lilies of C++ code includes a base library test drivers, sample

applications, and interfaces to C, C++, Matlab, and PETSc. Spi~li~le is freely available and can

be built on a variety of UNIX platforms as well as WindowsNT.
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i. INTRODUCTION

There are two major ordering problems that are addressed in this thesis, motivated primarily by

their application to sparse matrix computations in scientific computing. Both of these problems

are known to be NP-hard and have had several heuristics vie for dominance in each case. These

algorithms are designed to woi’k on large problems, often testing the amount of storage available

on the computer.

For the envelope/wavefront reduction problem, we were successful in enhancing a combinato-

rial heuristic in several ways. We achieved a significant reduction in the asymptotic complexity

and show a corresponding reduction in actual running time. We also identified a clear dichotomy

in how the algorithm behaved with different problem instances and therefore could further im-

prove the quality of the result. Finally, we were able to adapt the algorithm to refine an existing

ordering, which gives rise to an interesting algebraic-combinatorial hybrid.

The fill reduction problem has received a great deal more attention with many papers and

algorithms already published. Interestingly, while most of the algorithms are closely related,

there is no single piece of software that implements all of these algorithms. We provide an

entire suite of greedy fill-reducing ordering algorithms. We also present asymptotic complexity

bounds for the minimum degree (MD), multiple minimum degree (MMD), and approximate

minimum degree (AMD) algorithms. Our implementation is the first known implementation

using advanced object-oriented techniques such as polymorphism. The execution time of our

implementation using these object-oriented techniques is within a small constant of traditional

Fortran implementations, but far more flexible.

Our interest in developing new algorithms therefore extends to their efficient implementation.

Significant attention is therefore expended on the design and implementation of our object-

oriented software, Spinb{e. We use Spinb[e to experiment with, and extend our knowledge in,
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ordering problems. Special attention is paid to the trade-offs between the use of elegant, ad-

vanced soRware techniques and achieeving high performance retain efficiency comparable with

procedurally based codes implemented in C and Fortran77.

There is a critical relationship between the "computer science" and "software engineering"

-- the algorithms and the implementation -- that should not be dismissed lightly. Advanced

algorithms, which are essential for good performance, are increasingly complex and can greatly

benefit from good object-oriented implementations. In return, a well-defined framework of algo-

rithmic components is significantly more flexible and extensible than a collection of algorithmic

"black boxes."

Most computations involving a large, sparse systems of equations are sensitive to the ordering

of the equations and the unknowns. For some instances, such as direct factorization, the impact

of ordering this system is well understood. Other instances, such as incomplete factorization

preconditioning, the effect of the ordering has been observed but is not well understood or even

well characterized. Ordering these systems for specific computations is often vital to make the

computation efficient, or even tractable. A poor ordering of the matrix in a sparse direct factor-

ization can inflate the asymptotic complexity from O(n2) to O(~3). The ordering of the matrix

in incomplete factor preconditioned Krylov solver can accelerate or even prohibit convergence.



2. BACKGROUND

The information required to frame this research in context is provided here. Our research spans

the domains of sparse numerical linear algebra and object-oriented software engineering. Sec-

tion 2.1 discusses relevant sparse matrix topics, primarily graph models and sparse factorization.

Section 2.2 enumerates the software design principles we consider in the process of building the

object-oriented software.

2.1 Sparse Matrix Computations

We often describe solving the system of equations

Ax=b

where A is large and sparse. Interestingly, the "sparse" qualifier is never actually defined. An

informal working definition -- generally attributed to J. H. Wilkinson [38] -- is that the matrix

A has enough zero entries to make storing only the non-zero entries and their explicit indices

more efficient than that storing the zeros explicitly and foregoing the indices. Assuming 8 byte

double-precision floating point numbers (16 for complex numbers) and 4 byte integers for the

indexing, only one half of the n2 entries in an n x n matrix would need to be zero.

In practice, a much stronger statement of sparsity can be made -- especially in matrices

arising from finite differences and finite element methods. These matrices are so sparse that

there are only O(n) non-zero entries.

2.1.1 Graph Models

The placement of the nonzeros in the matrix, called the nonzero structure, determines many

aspects of sparse matrix computations. Graphs are a common abstraction to model the nonzero

structure of a sparse matrix. In this section, we list three graph models, some of their salient



(a~) graph(A) (b)coLint ersect _graph(A)

(d) spy(A)

(c) hypergraph(A)

FIGURE 2.1: Different Graphs Models of a Sparse Matrix. (a) adjacency graph, (b) column 
tersection graph, and (c) hypergraph of the same sparse matrix (d). Note that for the hypergraph,
the hyperedges are represented as black circles with white labels for the hubs.

characteristics, and in what contexts each model is most appropriate. Figure 2.1 presents all

three models for a siinple matrix to further illustrate their differences.

2.1.1.a Adjacency Graph

By far the most common graph model employed is that of an undirected graph on a symmetric

sparse matrix, called the adjacency graph. The name may sound somewhat redundant until one

realizes that an undirected graph is commonly stored represented as an adjacency matrix. The

adjacency graph is so pervasive that it is commonly referred to as the graph of a matrix, even

though other graph models exist. Before discussing the construction of this model, we need to

introduce the concept of structural symmetry and its relation the normal concept of a symmetric

matrix.

Definition 2.1 Consider a sparse n x n matrix A = [aij]. The matrix is said to be structurally

symmetric if and only if for every aij ¢ 0 in A there exists aji 7k O.

Remark 2.1 If a matrix is symmetric, it must also be structurally symmetric.
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Definition 2.2 Consider a sparse, structurally symmetric n × n matrix A = [alj]. The graph of

the matrix, G(A) = (If, E), where V is a set of n vertices corresponding to the n rows/columns

of A, and E is a set of edges (i, j) where (i, j) e E 4=~ a~j 

The adjacency graph is the most common graph model employed in ordering and partitioning

codes, despite its known deficiencies [40, 41]. The most immediate problem is that it is restricted

to symmetric matrices. It is not uncommon to find software that will add explicit nonzeros

to a sparse, square, unsymmetric matrices to make them structurally symmetric. Furthermore

self edges induced by nonzero diagonal elements in the matrix, if any, are dropped. Thus, an

unsymmetric matrix permutation derived from a symmetric graph may have anomalies that are

caused by the implicit removal of any diagonal nonzeros. It should also be noted that partitioning

codes typically use this model, and typically try to minimize edge cuts, though this does not

accurately translate into communication costs in a matrix-vector multiply in parallel [15].

It is common to have weights attached to the vertices, edges, or both in a graph. Rarely

are these weights directly related to the nonzero values in the original matrix. More often these

weights are integer values that are used for combinatorial purposes.

2.1.1.b Column Intersection Graph

The column intersection graph can be generated for any rectangular matrix. It has been used to

generate a column permutation for unsymmetric fill-reducing orderings. The construction of the

column intersection graph is as follows.

Definition 2.3 Consider a sparse m x n matrix A = [aij]. The column intersection graph of

the matrix, G~(A) = (Vc, Ec), where Vc is a set of n vertices corresponding to the n columns 

A, and Ec is a set of edges (i, j) where (i, j) e Ec ¢* aki L 0and akj 7 ~0 forsomerow k.

While this heuristic has been used in commercial applications, it is imperfect. The mapping

from rectangular matrices is onto, but not one-to-one. That is to say that the column intersec-

tion graph does not directly translate back into the nonzero structure of a unique matrix. In
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Figure 2.1(b) the column intersection graph is completely connected, even though the original

matrix is sparse. Clearly, we could add any number of additional nonzeros to the original matrix

in Figure 2.1(d) without changing the column intersection graph.

There is a relationship between a column intersection graph and an adjacency graph as given

in the following theorem.

Observation 2.1 For" any sparse rectangular matrix A = [aij], the colwmn inte~ection graph is

identical to the adjacency graph of ATA.

2.1.1.c Hypergraph

The hypergraph model is the least commonly implemented, but may be the most robust model

of all. It has applications particularly in unsymmetric wavefront and partitioning applications,

though no known codes using it currently exist.

Definition 2.4 Consider a sparse m x n matrix A = [aij]. The hypergraph of the matrix,

Gh(A) = (Vh, Eh), where Vh is a set of n vertices corresponding to the n columns of A, and Eh is

a set of hyperedges (i,j, k,... ) corresponding to the rn colv, mns of A. Each vertex j is a member

of hyperedge i if an only if aij ¢ O.

2.1.1.d Additional Graph Theory

Graph compression is an important technique that is critical for achieving the best performance

in modern codes. To explain the rationale behind graph compression, we must first define indis-

tinguishable vertices.

Definition 2.5 Given an undirected graph G = (V, E), two vertices v, w E V are indistinguish-

able ,if and only if there exists an edge (v,w) e E and (ad.i(v) Uv} = {adj(w) 

Graph compression is the practice of finding sets of indistinguishable vertices and replacing

them with a single supervertex, This supervertex has a weight equal to the number of constituent

indistinguishable vertices. If there is an edge between two supervertices i and j in the compressed



7

graph, it logically represents vwgt(i) x vwgt(j) edges in the original graph, where 0 is t he

vertex weight. Therefore, it is only necessary to store an array of length IVI for the vertex weights

of the compressed graph -- edge weights are computed on demand.

Graph compression can drastically reduce tile storage required for, and the time spent indexing

into, sparse data structure. In most cases, an ordering can be performed on the compressed graph

with the understanding that members of a supervertex are numbered sequentially. Working with

the compressed graph can even improve the quality of the result, particularly with some new

fill-reducing heuristics.

This compression technique applies to sparse matrices, but it is not exactly the same. In

our ordering algorithms, we are concerned only with the structure of the matrix, not the values

contained therein. Sparse matrices, however, have values associated with each nonzero entry that

must be preserved. In sparse matrices, the indistinguishable vertices form dense blocks -- called

inodes in PETSc [7, 8], and supernodes in SuperLU [54]. This reduces time and space for sparse

indexing and increases flop rates and cache performance by operating on dense blocks within a

sparse matrix.

Definition 2.6 A clique, C, in a graph G = (V,E) is a set of vertices C C V such that for

every i and j in C, there exists an edge (i,j) in 

Observation 2.2 Each set of indistinguishable vertices forms a clique, but not every clique forms

an indistinguishable set of vertices.

For the rest of this manuscript, a graph is assumed to be undirected and may or rnay not

be compressed. Any uncompressed graph without explicit vertex or edge weights is assumed to

have all vertex and edge weights equal to one.

If x is a vertex in the graph, then we define its adjacency set adj(x) as the set of all vertices

that share an edge with x. If X is a set of vertices in a graph, then its adjacency set

adj(X) adj(v) 
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The degree of a vertex is typically defined for unweighted graphs as deg(x) = ladj(x)l. For 

pressed graphs, each edge represents a connection between every vertex in the first supervertex to

every vertex in the second. Therefore the weight of each edge in a compressed graph is implicitly

the product of the vertex weights on either end. Thus, the degree for a compressed graph is

deg(x) = vwgt(x) ̄  vwgt(v)
vCadj(x)

One characteristic of all these graph representations is that it does not have an implicit

ordering in the stone way that a matrix does. To capture this on a graph, we must label the

vertices. Computing a reordering of the matrix is then reduced to the problem of relabeling the

vertices in the graph. This will cause a change of placement of nonzeros in the matrix, but not

the number of them.

The structure of a symmetric matrix A can be altered by performing symmetric (identical row

and column) permutations. For unsymmetric matrices, ordering algorithms can either make the

matrix structurally symmetric and continue, or use a model that supports unsymmetric matrices

and generate separate row and column permutations.

It is also interesting to note that all of the graph models presented have undirected edges (or

hyperedges). This is probably due to analytical ease more than necessity. There is, in fact, 

very natural directed graph model for sparse unsymmetric factorization, but its deployment in

actual codes is far from widespread.

2.1.2 Sparse Direct Solvers

To solve a large, sparse symmetric system of equations Am = b directly, the matrix A is decom-

posed into the product of LDU where L is a lower triangular matrix, D is diagonal, and U is upper

triangular. The modified system of equations LDU.T, = b can then be solved quickly through a

series of triangular backsolves and diagonal scalings. If the original matrix is symmetric, then

U = LT, and the storage and arithmetic required to form the factorization is halved.



A

I order P ,Pc

b

L,D,U!

~1 factor [Pr’,Pc’:] solve I

X

FIGURE 2,2: A "black box" fornmlatioxl of a sparse direct solver.

If A is a sparse matrix, the LU factors often are significantly less sparse. Since sparsity of

the factors is determined by the nonzero structure of the original matrix and the elimination

order, it is prudent to consider permuting the system to (PrAPc)(Pcx) = using row and

column permutation matrices, Pr, Pc, that reduces the storage and arithmetic work required for

the process. If the original matrix A is symmetric, then Pr = Pc to preserve symmetry.

If A is symmetric and positive definite, then the factorization is numerically stable for any

symmetric permutation. Otherwise, it is still common to permute the system to reduce work and

storage. Only during the factorization itself is care taken to maintain numeric stability, which

can degrade the amount of work and storage saved.

The direct solution of a sparse symmetric linear system of equations can be described in three

lines, corresponding to the three main computational steps: order, factor, and solve,

(P,.,Pc) = order(A) (2.1)

(L, D, U,-P~, P’) = factor(A, P,., (2.2)

x = solve(L, D, U, P;, P~, b) (2.3)

where A is a sparse, symmetric, matrix, L is the lower triangular factorization, D is a diagonal

scaling matrix, P~ and Pc are row and column permutations, P’ and Pc’ are the permutations

after being modified by the factorization process for numerical stability, b is the known vector,

and x is the unknown solution. Equivalently, we show a "black box" scheme in Fig. 2.2.
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2.2 Object-Oriented Programming

There is more to computer science than just transforming a mathematical algorithm to a working

piece of software. There is an art to getting the software to be usable, flexible, to withstand years

of use on multiple platforms. Software lasts far longer than hardware; it nmst because it is more

difficult and expensive to build.

We chose to follow object-oriented paradigms in implementing our software because we firmly

believed in several guiding principles in software design: interface simplicity, complexity man-

agement, flexibility, extensibility, safety, and efficiency. Object-oriented software does not au-

tomatically follow these principles, but they were easier to adhere to when implemented with

object-oriented techniques than without.

Implementing these ordering algorithms using object-oriented software and following these

principles as a fundamental part of the design has dramatically increased the amount of work

and time spent in this research. However, we are confident that the "value added" by providing a

robust and usable piece of software is in itself a new and significant contribution. It is only after

having the software tool that we were able to get new insights and develop novel solutions. This

research has convinced us that object-oriented programming not only produces better and more

usable code, but also provides toms to solve problems in ways that are not natural otherwise.

2.2.1 Interface Simplicity

One of the cornerstones of providing a simple interface is to get the abstraction correct. We

want to provide components that users are familiar with, and allow them to use the components

in an intuitive way. The computations are formulated in terms of things like sparse matrices,

vectors and permutations, and in terms of algorithms like orderings, factorizations, and solvers.

Accordingly, we strive to provide abstractions for such entities with minimal interfaces to avoid

code-bloat, and user confusion.

Previous ordering codes, primarily those implemented in C or Fortran are coded for generality

and highly tuned tbr performance, often with little invested in interface simplicity. Users are
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commonly required to memorize data layouts for complicated data structures, handle storage

requirements explicitly, and use extensive combinations of codes and flags in the parameter lists

of function calls. Thus the engineer or scientist using the software must think in terms of the

software implementation and not in terms of the problem itself.

2.2.2 Complexity management

Even with very clean abstractions at the individual entity level, complexity can creep in as these

pieces are assembled into larger, more complicated components. By aggregating objects, we

stress the abstraction and its minimal interface. If tile interface is too simple, the objects lack

generality. If the interface is too complex, the objects lose usability. To manage the complexity

of large collections of objects, we depend on encapsulation and layers of design.

Memory allocation should only be a concern for the simplest objects: character strings,

vectors, etc. Higher level objects such as sparse matrices, ordering algorithms, and solvers should

defer such matters to their constituent lower-level objects.

In Fortran77, for example, a sparse matrix is commonly represented as a collection several

arrays. Algorithms are implemented as simple subroutines which read from and write to these

arrays. Since there is no support for abstract data types in Fortran77, these subroutines tend to

have long argument lists with several arguments per abstract data structure. Additionally, since

Fortran 77 lacks dynamic memory allocation, users of the subroutine commonly must produce

additional work arrays to be used internally by the subroutine. This forces users of high-level

routines to be constantly aware of low-level details which increases the complexity of the software.

2.2.3 Flexibility

The key to achieving flexibility is loose coupling. We design separate abstractions for structural

entities such as sparse matrices, pernmtations, and vectors on one side and for ordering and

factorization algorithms one the other side. One can and should expect to swap in different

ordering or factorization objects in the solver much in the same way that components in a stereo



12

system can be swapped in and out. Once the stereo has been configured, it can be set to perform

different tasks by pressing different buttons. Advanced users can even use on-screen programming

to perform more arcane functions. So too with flexible software. Ordering and factorization are

performed only once in a series of systems with the same coefficient matrix but with different

right hand sides, however the triangular solves must be repeated for every system in the series.

A similar situation occurs wil~h iterative refinement, where triangular solves must be repeated

for a single run of the ordering and factorization algorithms.

Swapping components does not happen only with data structures and algorithms. In general,

we want, to be able to swap smaller components within a larger one. For instance, factorization is

usually composed of a couple distinct phases (symbolic factorization and numerical factorization).

Positive definite solvers and indefinite solvers differ only in the numerical factorization where

the latter must pay attention to numerical stability. Therefore this is the only component we

should swap out. By splitting a factorization algorithm in this way we provide the possibility of

performing only symbolic work, for those who are not interested in the numerical results.

The challenge is that flexibility and simplicity are at odds with one another. The simplest

interface to a solver would be just a black box that one throws a coefficient matrix and a right

hand side in one end and produces the solution out the other end. While very easy to use, it

would not be at all flexible. On the other hand, a very flexible implementation can expose too

many details, making a steeper learning curve for users. We try to provide multiple entry points

to our code and let the user decide which one is aproporiate for their needs.

While little of this part of the design philosophy is radically new, we find that it is also

not generally established practice either. This style of software is harder to implement correctly

because it provides multiple possible execution paths. It resembles more the event-driven software

of windowing programs than a simple subroutine that marches though its prescribed execution

path.
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2.2.4 Extensibility

Whereas flexibility allows us to push different buttons and interchange components, extensibility

allows others to create new components and alter the effects of certain buttons. The best tech-

niques we found for ensuring extensibility in our codes were by enforcing decoupling, providing

robust interfaces, and pointing out specific places for polymorphism.

Extensibility is not an automatic feature of a program written in an object-oriented language.

Rather, it is a disciplined choice early in the design. In our implementations, we have very explicit

points where the code was designed to be extended. Our intent is to keep the package open to

other ordering Mgorithms and better heuristics as they become available.

2.2.5 Safety

When we talk about safety here, we are concerned with two major issues: protecting the user

from making programming mistakes with components fl’om our codes (compile time errors), and

providing meaningful error handling when errors are detected at run-time. Earlier we argued that

the simplicity of the interface increases the usability of the software, we add here that usability

is further increased by safety.

Compile time safety is heavily dependent on features of the programming language. Any

strongly typed language can adequately prevent users f,’om putting square pegs in round holes.

That is, we can prevent users from passing a vector as an argument that should really be a

matrix.

Run time errors are more difficult to handle. Structural entities such as sparse matrices and

permutations are inputs for factorization algorithms. When such an algorithm is run, it not only

should detect if the inputs are valid, but also that they correspond to each other.

The biggest difficulty about error handling is that while we, the library writers know very

well how to detect, the error conditions when they occur, we must leave it to the user of the

library to determine what action should be taken. Error handling is an important and all too

often overlooked part of writing applications of any significant size. Because we are writing a
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design and advanced programming paradigms. Our algorithms are far more complicated than

a matrix-vector multiply and providing a set of algorithms for each possible representation of

the matrix is not feasible. Even if we did general algorithms that operate on matrices regardless

of their layout, we could not make any guarantees about performance. In short, we are more

concerned about adding new algorithms, not adding more matrix formats. Sj0i~hIe’s ordering

algorithms apply to general, sparse, symmetric matrices that must be laid out in a specific way

for efficient computations. We provide enough tools to convert to Spini~[e’s graph and matrix

classes.

Finally, we put some restrictions on the object-oriented techniques we made use of. For exam-

ple, we do not define operator overloading for our matrices and vectors because our contribution

is not in providing a general matrix class, but in providing a suite of ordering algorithms. We

eschew the use of multiple inheritance, although we have found one occasion where its use is very

helpful and so have used it there.
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This chapter presents three problems and applicable algorithms. The graph diameter problem and

the pseudo-diameter algorithm are discussed in Section 3.1. The envelope/wavefront reduction

problem and our Fast Sloan Algorithm is discussed at length in Section 3.2. Finally, we motivate

the fill reduction problem an(l discuss a suite of greedy fill reducing ordering algorithms in

Section 3.3.

3.1 Diameter of a Graph

Finding the diameter of a graph is not an ordering problem per se, but it is a necessary first

step for many ordering algorithms such as the Reverse Cuthill-McKee (RCM) [17], Gibbs-Poole-

Stockmeyer (GPS) [36, 53], Gibbs-King (GK) [35, 49], and Sloan [26, 50, 73] algorithms. 

Section 3.1.1 we define the diameter of a graph and show that it requires O([VI ¯ IEI) time,

which is more expensive than the ordering algorithms themselves. In practice, a heuristic that

computes a pseudo-diameter, or approximate diameter, is used employed. We step through a

modern implementation of the pseudo-diameter algorithm in Section 3.1.2.

3.1.1 Definitions and Concepts

We begin by defining what we mean by the diameter of a graph. To do so, we need to also

introduce the notion of distance between two vertices in the graph.

Definition 3.1 dist~(u,v), the distance between two vertices u,v in a graph G, is the length of

the shortest path between vertices u and v in G.

Definition 3.2 The diameter of a graph G, is a path from s to e such that dista(s,e) is the

mazimnm of all distances between any nodes in G.

length_of_diameter (G) max dist(u, v)
u,vcV(O)
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To find the distance from one vertex in a graph to all other vertices, simply perform a breadth-

first search starting at that vertex, called the root. It is well known that the time spent in a

breadth-first search is O(IVI + [El)t16, pg. 472] where the initialization overhead is O(1171) 

the search itself is O(]EI). The last vertex visited by the breadth-first search is also tile farthest

from the root. To find the diameter of a graph, one needs consider the farthest vertex from

every possible root. Therefore a breadth first search needs to be performed for each vertex in the

graph. Since the initialization overhead need only incurred once, computing the diameter takes

O([V[ + [V] * [El) or simply O([V[ * lED time.

The start and end vertices of a diameter of a graph are not necessarily unique. Given a

specific pair of start and end vertices in a graph, the shortest path between them need not be

unique either. While technically the diameter of a graph includes all the intermediate vertices in

the path between the start and end vertices, we are only interested in these two. Therefore, we

often talk about a pseudo-diameter algorithm selecting two vertices (the start and end vertices)

instead of generating an entire path through the graph.

Before presenting the pseudo-diameter algorithm in detail, it is necessary to introduce a few

additional concepts, all of them centering around the level structure of a graph.

Definition 3.3 The level structure of a graph G is a sequence of level sets Lo,L1,L2,... ,Lh

where

1. all vertices in Lo are adjacent only to vertices in Lo or L1

2. all vertices in Lh are adjacent only to vertices in Lh or Lh-1

3. all ’vertices in Li, where i E [1, h - 1] are adjacent only to vertices in Li-1, Li, or Li+l.

A level structure of a graph can be generated easily by a simple breadth-first-search (BFS) from

the root vertex. Whereas a BFS simply visits vertices in a certain order, we must add the concept

of level sets, or distinct levels to use a BFS to implement a pseudo-diameter algorithm. With

the separation of distinct levels in a BFS, we also get the following useful concepts.

Definition 3.4 The height of a level structure is the number of levels sets in the structure.
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Remark 3.1 The length of a pseudo-diameter is the same as the height of a level structure rooted

at either s or e.

Definition 3.5 The width of a level s~ructure is the maximum number of vertices in of any of

its level sets.

3.1.2 The Pseudo-Diameter Algorithm In Detail

The pseudo-diameter algorithm is presented as Algorithm 3.1. As presented, it takes a graph

and a shrinking strategy as input. We will discuss the role of the shrinking strategy shortly.

When completed, the pseudo-diameter algorithm returns two vertices s and e as the start and

end vertices of the pseudo-diameter. The pseudo-diameter computation uses two BFS engines

(line 1). The forwardBFS always uses the current start vertex as the root. The reverseBFS

object uses candidates for the end vertex as the root. Initially, the start node is chosen to be

any vertex of smallest degree (line 2) and the end node is unknown (line 4). Now the algorithm

enters the main outer loop which does not exit until a suitable end node has been determined

attd all candidates have been exhausted. For each iteration of the outer loop, we perform the

forward breadth-first-search (line 5), set the current diameter as the height of the level structure

(equivalently, the distance from the last node in the BFS to the root), and get the set of all vertices

that are in the farthest level set, called the candidate set (line 7). At this point in our discussion,

we will skip lines 8, 11, 13--14 and 23-24 as they are all optimizations to improve performance.

They will be revisited after the fundamentals are explained. For each candidate for end vertex in

the candidate set (line 10), we do a reverse breadth-first-search. We are particularly interested

in the candidate whose reverse breadth-first-search has the minimum width, so we initialize the

local variable rain_width to an arbitrarily large number (line 9).

If we find a candidate that has a narrower level structure than the tbrward breadth-first-

search (line 15), then we make this candidate vertex the new start vertex (line 16) and restart

the algorithm. The break in line 17, affects only the inner loop (lines 10-21) and jumps to line

22, since e is still undetermined, the outer loop (lines 4 22) starts a new iteration.
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Algorithm 3.1 The Pseudo-Diameter Algorithm

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

11.
12.

13.

14.
15.

16.
17.
18.
19.

20.
21.

22.

23.
24.

25.

[ S,

(
e ] = PseudoDiameter( const Graph * g, ShrinkingStrategy * strategy)

// Create two breadth first search engines
BFS forwardBFS( g ), reverseBFS( g );

//I Initialize start and end vertices of pseudo-diameter

Graph: :vertex s = g->vertex_of~ninimum_degree() 
Graph: :vertex e = -I; //-i is flag/or non vertex

do { //while e =--~ -1

//I do BF5 starting at start node’s’
forwardBFS.execute_at ( s ) 

//get candidateSet of end nodes
int diameter = forwardBFS.height () 

Graph::vertexSet candidateSet = forwardBFS.vertices_at_level( diameter );

//shrink candidateSet to a manageable number
stategy->shrink( candidateSet );

int min_width = MAX_INT;

for each candidate IO candidateSet {

//do BFS from each candidate
//I (abort if width() > ’min_width 
reverseBFS, short_circuit_at ( min_width ) 

reverseBFS.execute_at( candidate );

//I determine if candidate is appropriate as ’e’
if (reverseBFS.has_short_circuitedO) {

//reverseBFS is wider than a previous reverseBF5 with e
continue ; //I do nothing, skip this candidate

} else if (reverseBFS.height() > diameter 

reverseBFS.width() < min_width ) 
//reverseBFS is better than the forwardBFS
//reset algorithm with candidate as new s
s = candidate;

e = -1;
brea k ;

} else if (reverseBFS.width() < rain_width 
//I reverseBF5 is narrower than any others

/I/make this new end node
min_width = reverseBFS.width();

e = candidate;

}
} //I end foreach

} while ( e == -1 );

//I swap s 8z e if the reverseBF5 is narrower than forwardBF5

if (forwardBFS.width() > reverseBFS.width() 
return [ e, s ];

}
return [ s, e ];

} //end function
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If the reverse breadth-first-search does not have more levels than the forward breadth-first-

search, then it must have at least as many. Furthermore, if it is narrower than the most narrow

reverse breadth-first-search so far (line 19), then we’ve found a new minimum width (line 20),

and the candidate is chosen as the end vertex (line 21).

Now to revisit the optimizations. The most important is the shrinking strategy (line 8).

Instead of performing a reverse breadth-first-search on all vertices that are farthest away fi’om

the start vertex, it is much faster to only try a select subset. Various heuristics can be applied

such as: sorting the candidates by degree and choosing half of that set [73], choosing a single

vertex of each degree [26], and sorting the candidate set by vertex degree and choosing the first

five vertices that are not adjacent t,o any previously chosen vertex [69].

Another useful optimization is the short-circuiting mechanism (lines 11, 13-14). Since 

know that we will not be accepting any candidate whose level structure is wider than the one

we currently have, we can abort the breadth-first-search as soon a level set that is sufficiently

large is detected. First, we enable the mechanism at line ll. Recall that if this is the first time

through the inner loop, rain_width is arbitrarily large, so we know it will not be triggered. At

line 13, we test if the reverse breadth-first-search has triggered. If so, we know this candidate

will be rejected and we continue immediately to the next candidate (line 14).

Finally we have our start and end vertices (line 23), but it is possible for the reverse breadth-

first-search to be narrower than the forward breadth-first-search. If this is the case, then we

simply return the start and end vertex pair reversed (line 24). Otherwise, we return them as 

(line 25).

3.1.3 History

A modern implementation of the pseudo-diameter algorithm has become significantly faster and

more complex in the last thirty years. Gibbs, Poole, and Stockmeyer [36] observed that at the

end of a pseudo-diameter computation, there are two level structures available: one from the

start node and one from the end node. They observed that some post-processing of these two
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level structures can obtain a third level structure whose width is usually less than the other

two. George and Liu [29] recommended terminating the construction of any level set as soon as

the width exceeded that of the narrowest level set found so far. Lewis [53] recommended that

candidate vertices be sorted by degree, since pseudoperipheral vertices tend to have low degree.

Sloan [73] incorporated both of these modifications into his algorithm. He Mso observed that

vertices with high degrees are often not selected as potential start or end vertices. He therefore

introduced a the first shrinking strategy that took only the first half of candidate vertices sorted

by degree. Duff, Reid, and Scott [26] and later Reid and Scott [69] have introduced more

aggressive shrinking strategies. In the latter work, they restrict the candidate set to no more

than five in order of increasing degree and omitting any vertes that is a neighbor of a vertex

already considered.

By being so restrictive, the algorithm generates level structures for a minimal number of

vertices and can greatly improve its execution time. Furthermore, Reid and Scott [69] point out

that the width of the level sets from the start and end vertices are not necessarily the same. If

the latter is more narrow, it is advantageous to switch the start and end vertices.

3.2 Envelope/Wavefront Reduction

The envelope/wavefront reduction problem1 is a classic graph ordering problem that has many

applications that extend far beyond numerical linear algebra or sparse matrix computations.

We first introduce relevant definitions and notation (Section 3.2.1) and then derive formulae

for computing the envelope and wavefront for certain model problems (Section 3.2.2). We review

the history of algorithmic development for this important problem (Section 3.2.3) and discuss

our enhancements to the algorithm (Section 3.2.4). Our Fast Sloan Algorithm is discussed 

detail (Section 3.2.5) and then its asymptotic complexity is analyzed (Section 3.2.6). Next 

discuss our related algorithm of Sloan Refinement (Section 3.2.7). We end this section with

1also called skyline or profile reduction
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a brief overview of some promising applications (Section 3.2.8) and"a brief examination of the

impact our published research [50] in this problem has had.

3.2.1 Definitions and Notation

For the purposes of this discussion, we will restrict ourselves to structurally symmetric matrices

(see Definition 2.1, page 4). This is a classic restriction in the literature and greatly simplifies the

presentation of new material. Later, we will show how this class of algorithms can be generalized

to the unsymmetric case. For the sake of simplicity, we will assume that all the diagonal elements

of A are nonzero. While this is certainly the case for symmetric, positive definite matrices, it

is not true in general. However, since these algorithms center on the undirected general graph

model -- which does not capture self-edges -- this is not an unreasonable assumption.

Definition 3.6 Consider a large, sparse, structurally symmetric matrix, A. The envelope of the

matrix A, is defined as the set of all matrix entries aij between and including the first nonzero

of the row, up to and excluding the diagonal.

env(A) = {a~,j 9: f~(A) <_ j < i, ~ < i < ~},

where fi(A) is the column of the first nonzero entry in the th row of A.

The envelope of a symmetric matrix is easily visualized. Picture a sparse, structurally symmetric

matrix, then remove the upper triangle (including the diagonal) and the leading zero elements 

each row. The remaining elements (whether nonzero or zero) are in the envelope of the matrix.

For analysis, we also introduce the row width of a sparse, structurally symmetric matrix.

We will use this concept to define the bandwidth of a matrix and show the relation between the

bandwidth and the profile.

Definition 3.7 Consider a large, sparse, structurally symmetric matrix, A. The row width of

the i th row, rwi(A), is the difference between i and the column index of the first nonzero element



on the i tt~ row, or equivalently,

rw~(A) = max (i- 
j : a~j~’0
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Definition 3.8 Given a large, sparse structurally symmetric matrix, A, the bandwidth of A is

defined as the max row width:

bw(A) = max two(A).
l<i<n

The bandwidth of a matrix is very important for a class of solvers called banded solvers that store

matrices in a banded format. As we are interested in general sparse matrices, we have little use

for this specialized format. It is worth noting, however, that bandwidth reducing orderings, such

as Reverse Cuthill McKee (RCIVI) [17, 57], are critically dependent on the pseudo-diameter algo-

rithm. In fact, most of the time spent doing an RCM ordering is actually spent doing the pseudo-

diameter computation. Although we’ve done no algorithmic work in the bandwidth problem, we

provide an RCM implementation in our software since (1) we had a first-rate pseudo-diameter

implementation (2) the rest was easy to implement and (3) most other RCM implementations

have not kept current with the faster (and better quality) pseudo-diameter codes.

We now show that there is a relationship between the bandwidth reduction problem and the

wavefront reduction problem: they can both be stated in terms of the row width.

Remark 3.2 Given a large, sparse structurally symmetric matrix, A, the size of the envelope of

A is the sum of the row widths:

Therefore, we can state the bandwidth reduction problem in terms of minimizing the maximum

row width, and we can state the envelope reduction in terms of minimizing the sum of the row

widths.
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While we have now adequately defined the envelope reduction problem, we have yet to define

the analogous wavefront reduction problem. We define the wavefront below and then show how

it too can be defined in terms of row width.

Consider the i th step of Cholesky factorization where only the lower triangle of A is stored.

When factoring the i TM column, there may be contributions from previously factored columns

that need to be accumulated. Formally, any kTM row (k > i) is called active if there exists a

previously factored column f (f < i) such that akl ¢ 0. Tile set of all active equations for each

colunm i of A is called the wav@’ont of A, wfi(A).

In terms of the envelope, the i TM wavefront is the set of rows i TM column that are within the

envelope of the matrix, including the i TM row itself. We can also define the i th wavefront in terms

of the general undirected graph of A. In the graph of A, the i th wavefront consists of the vertex

i together with the set of vertices adjacent to the vertices numbered from 1 to i. Formally, the

i th wavefront is

wf~(A) = v~ u adj ({Vl,V2,... ,vd).

The vector of n wavefronts is often summarized into scalar values, such as the maximum

wavefront and mean-square wavefront as defined below:

maxwf(A) = max {[wfi(A)[}, (3.1)
l<i<n

n

mswf(A) - l~[wfi(A)[2. (3.2)
-- n

i=1

There are a class of solvers called frontal solvers whose performance is determined largely by

these wavefront characteristics. The maximum wavefront size measures the maximum storage

needed for a frontal solver during factorization, while the mean square wavefront measures the

number of floating point operations in the factorization. Duff, Reid, and Erisman [22] discuss

the application of wavefront reducing orderings to frontal factorization.

Finally, we need to show the relationship between the envelope and the wavefront.
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A 2-D Grid
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Matrix of the grid.
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FIGURE 3.1: Example of row-widths and wavefronts. A two dimensional mesh and its vertex
ordering are shown in (a), the structure of the associated matrix is in (b), and a table of pertinent
data is in (c).

Observation 3.1 The sum of the waveffonts of a matrix equals the size of the envelope, plus n.

Iwfi(A)[ = n+ rwi(A) = n+ ]env(A)l.
i:i

We now provide a simple example to illustrate these characteristics we have defined. Fig-

ure 3.1(a) shows a small two-dimensional grid and Figure 3.1(b) shows the structure of its asso-

ciated matrix A. Figure 3.1(c) is a table showing the row-widths and wavefronts of the matrix

A. From this table, we can compute the parameters esize(A) = 46, bw(A) = 4, maxwf(A) 

and mswf(A) ~ 16.4.

All of these parameters are sensitive to the nonzero structure and the ordering of the matrix.

If we numbered the vertices in Figure 3.1 in a spiral fashion beginning with vertex one and

numbering from the outside towards the inside, the permuted matrix Af yields esize(A’) = 59,

bw(A’) = 11, maxwf(A’) = 7, and mswf(A’) ~ 

We further illustrate the influence of ordering on envelope and wavefront for a real problem,

and using four real-world orderings. Figure 3.2, illustrates just how different these orderings are.

For the RCM, Sloan, spectral, and hybrid (spectral with a modified Sloan refinement) orderings
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RCM
bw = 2,826

lenvI = 2.66 × 107
maxwf =- 1,734

mswf = 1.07 × 106
cpu time = 3.7 secs

\

Sloan
bw = 81280

lenvI = 1.60 x 107
maxwf = 1,092

mswf = 3.95 × 105
cpu time = 6.3 secs
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FIGURE 3.2: Structure of bcsstk30 with four orderings. (a) is the nonzero structure using the
RCM ordering, (b) is a plot of the row widths and wavefront sizes for the RCM ordering. (c)
is the nonzero structure for the Sloan ordering. (d) is the plot of the row widths and w~vefront
sizes for the Sloan ordering.
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FIGURE 3.2 (Continued): (e) is the nonzero structm’e using the spectral ordering. (f) is 
of the row widths and wavefront sizes for the spectral ordering. (g) is the nonzero structure for
the Spectral ordering after Sloan refinement. (h) is the plot of the row widths and wavefront
sizes for the spectral ordering after Sloan refinement.
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we show the nonzero structure of a matrix, plot the row widths and wavefront sizes, and tabulate

some relevant data. Note that the area under the wavefront curve is actually larger than the

area under the row width curve. However, the row width varies so wildly, it appears as if we had

colored in the area underneath it when, in fact, we only plotted the top of it, like we did the

wavefront. The wavefront, by comparison, is much less volatile.

3.2.2 Model Problems

It is interesting to note that all of these envelope and wavefront characteristics can be computed

for a wide range of model problems and orderings. Here we compute them for three types of

rectangular grids, each with two different orderings. For the purposes of this discussion, we

assume an ~z × n grid with rn < n without loss of generality. The grid shown in Figure 3.1(a) 

an example of a grid using a five point stencil -- meaning, that each node depends on itself and

its tbur neighbors (north, south, east and west). seven point stencil in cludes either northeast

and southwest or northwest and southeast neighbors, and a nine point stencil contains all the

above.

In this analysis we consider two orderings; vertical and diagonal. In describing both orderings

it is necessary to visualize the grid oriented horizontally. In a vertical ordering, the vertices are

numbered by columns; top to bottom, left to right. A diagonal ordering is the optimal ordering

for square, five point grids. In our case, the diagonal ordering always starts from the node on the

top left (northwest) corner of the grid, and numbers them immediately below and to the right.

This pattern is repeated, numbering vertices along diagonals running from the bottom left up

and to the right. For some rectangular grids, the detail about direction along the diagonal makes

some difference.

To compute all of these parameters, we need to compute the sum of the waveflont (~ ]wfi (A)[)

and sum of wavefront squared (E Iwfi(k)l’) - For all of these problems, we break up the mesh

into different parts and analyze them individually. Then, we sum the parts back together at the
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II III

FIGURE 3.3: Domains of a Vertical Ordering on rectangular 5-point grid.

end. We use the following well-known identities in our analysis.

i=1

~t =
6

i=1

Tt

i3 _ + I)2
4

/:-1

(3.3)

(3.4)

(3.5)

3.2.2.a Vertical Ordering on 5-point Mesh

We begin with the simplest mesh, and the simplest ordering. Figure 3.3 shows how we break up

the mesh into different domains. Domain (I) consists of the first rn - 1 vertices, the first vertex

has a wavefront of 3 (two adjacent vertices, plus itself). Each subsequent vertex adds two new

vertices to the wavefront, while removing the previously numbered node. This continues for the

first rn - 1 vertices. The mth vertex does not change the size of the wavefront, which is m + 1.

Domain (II) consists of the mth vertex, and the following rn(n -2) vertices. Throughout this

domain, the size of the wavefront is uniformly rn + 1. The final rn vertices in domain (III), are

all in the wavefront when the last vertex of domain (II) is numbered. Numbering each vertex 

this domain effectively reduces the wavefront by 1.
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i < m

m<i<m(n-1) ,

m(n- 1) < i _< mn

(3.6)

where Rs, stands for a matrix based on a rectangular mesh with a 5-point stencil ordered verti-

cally. These equations can be easily checked with the square 5-point mesh shown in Figure 3.1.

Using Equation 3.6, we can compute the sum of the wavefront sizes and the sum of the wavefront

squared,

= k/=l(i+2) + (re+l) + (ran-i+1)
i=rn Li=m(n_ l )+ 

Li=I Li=I J

= n(m2+ re)-rn2+m-l,

and

1[/__~1(i+2)2 + E (’m+1)2 + (ran-i+1)2
i=m [i=m(n--1)+ 

[m(m-1)(2m-1.)6 +4m(m-1)+4(m-1)]2

[, ,]+ m+l)2(mn-2m+l + i2

ki=l J

n(ma + 2m2 + m) - 4 3 m2 7-gin - + ~m - 3.

3.2.2.b Diagonal Ordering on 5-point Mesh

We are now ready to apply the same technique for a diagonal ordering. In Figure 3.4, we show

a 4 x 9 mesh, since drawing one that it arbitrarily sized is diflqcult with a diagonal ordering. We

also show in Figure 3.4 how the separation into domains is different. In this case, domain (I)
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II III

FIGURE 3.4: Domains of a Diagonal Ordering on rectangular 5-point grid.

consists of the first m(rn - 1)/2 vertices, the first vertex has a wavefront of 3, the next two have

a wavefront of 4, the next three, 5, and so on for the rest of the domain. Like before, domain (II)

has a wavefront that is uniformly m+ 1, but it is smaller, containing only ’m(n-rn) vertices. The

final rn(rn + 1)/2 vertices in domain (III) have an unusual pattern of wavefronts that requires

some investigation. The first rn - l vertices of this last domain have a wavefront of m + 1, the

next m - 1 have a wavefront of m, then m - 2 vertices, each with a wavefront of m - 1 and so

on. The last two vertices have wavefronts of 2 and 1, respectively.

While it is not so hard to describe the wavefronts of each vertex using the diagonal ordering.

It is difficult to provide a closed-form equation like we did for the vertical ordering of a 5-point

grid. Luckily, we are interested in the sum of the wavefronts and the sum of the squares, which

can be written in a simple form. For the domain (I), we can show that the sum of the m(’m- 1)/2

wavefronts is

Similarly, we can show that the sum of the rn(rn + 1)/2 wavefronts for domain (III) is equal 
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II IV

FIGURE 3.5: Domains of a Vertical Ordering on rectangular 9-point grid.

Thus, the.sum of the wavefronts is

i=l

+ (m -1) (m + l) + Ei(i+l)+l
i=1

m--I m--I

= 2Ei2+3Ei+n(m2+m)-ma-m2+rn2
i=1 i=1

---- n(??12 @ T;%) -- I--T;%3 ~- ~Tfl2 -- T;%’3

and the sum of the wavefront squared is

/=1

I--1 ]= ~i(i+2) 2 + ~(.-~)(~+1)2
k i=1

[ ._1 ]+ (rn-1)(m+l) 2+ Ei(i+l)2+1

i=1

m--I m--i m--I

: nm(m+l)2+2~i3+6Ei2+5Ei+(m+l)2(-m2+m-1)+l
i=1 1=0 i=1

m 3= ~n(.~ + l) 2 - V(.~ + 5).

3.2.2.c Vertical Ordering on 9-point Mesh

Next we present the computations for a vertical ordering on a rectangular grid using a 9 point

mesh. The construction is much the same as for a 5 point mesh. For domain (I) the first vertex
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starts with a wavefront of four and each subsequent vertex up to the m - 1st adds an additional

2 vertices, and subtracts the previous vertex for a net increase of 1 from the previous wavefront

size. The rnth vertex, and every whole multiple up to n - 1, belongs to domain (II); each 

which having a wavefront of m + 1. The vertices in domain (III) each have a wavefront of m + 

Domain (IV) is exactly like domain (III) of the vertically ordered 5-point mesh. Every vertex

starts off in the wavefront and as they are numbered all their predecessors are removed. Like

the vertical ordering of a 5 point grid, we can easily write an explicit equation for the size of the

wavefronts for a vertically ordered 9 point grid,

i+3 i<m

m + 1 m < i < re(n- 1),

m+2 m < i < m(n-1),

ran-i+1 m(n -1) < i <_ 

i rood m = 0

i modm--/:O

(3.7)

Using Equation 3.7, we can compute the sum of the wavefront sizes and the sum of the

squares,

Li=I J

+Ira(%+1)]

= n(m2+2m-1)-m2-m,
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FIGURE 3.6: Domains of a Diagonal Ordering on rectangular 9-point grid.

-1’ ]+ (rn+2) 2 + (rnn-i+l)2

L i=~ Li=m(n_l)+l

= i 2+6Ei+9(rn-1) + (rn+l)2(n-1)
k i=1 i=1

+ (~+2)~(.~-1)(~-2) ~i~
Li=l .t

= g + 2 + 9(.~ - ]) + (,~ + ~)2(~ 

= n(rna + 4rn2 + 2rn - 3) - ~ (4rna + 12rn2 - 1am + 6).

3.2.2.d Diagonal Ordering on 9-point Mesh

Finally, we present a diagonal ordering on a 9-point stencil. Figure 3.6 shows a 4 x 9 rectangular

grid with a 9-point stencil. It is slightly deformed to put additional space between vertices of

different domains. This time, we identify six different domains. Furthermore, all vertices in one

domain are not exhausted betbre beginning the second. We start with domains (I) and (II). 

first vertex has a wavefront of four vertices. Each time we jump from domain (I) to domain (II),

the size of the wavefront increases by one. Similarly, each time we jump from domain (II) domain
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(I) the wavefront increases by one. Therefore all the wavefront sizes in (I) are even numbers 

all the wavefront sizes in domain (II) are odd. The sum of the wavefronts for domain (I) is simply

m--1 m--2 . .
~i=1 (2i+2). The sum of the wavefronts for domain (II) is 2~=1 ~(2~+3). All (m-n)(m- 

vertices in domain (III) have a wavefront of 2m - ] vertices and all n - m vertices in domain (IV)

have a wavefront of 2m vertices. Domains (V) and (VI) interplay similarly as (I) and (II) 

only in this case every time the ordering switches domains, the wavefront reduces by one. The

V’’-i i(2i + 1). The sum of the wavefronts for domainsum of the wavefronts for domain (V) is z-~i=l

(VI) is 1 + 2_~=1 z~.

Putting this all together we get

= [/--~1(2i+2) + i(2i+3) + (m-1)(n-m)(2m-1)k "=1

+ (n-m)(2m)+ [~--~1 i(2i+1) + /
-- i=1 J

m--1 m--1 m--1

= 4E i2 +8El+ E2-(m-1)[2(m-1)-3]
i=1 i=1 i=1

+(n- m)[(m - 1)(2m- 1) + 2m] 

= n(m B-m+1)-2m33 + m2-~m’

and

E Iwfi (R9d)12
i -1 ]]= Z (2~ + 2)~ + ~ i(2i + 3)~
L i=1 k i=1

+ [(m -- l)(n -- m)(2m -- l)2 + (n - 2]

+ 1+ i(2i+l) 2 + 1+ 2i)2

i=1 i~1 J
m-1 m-1 m--1

= 8 E i3 q- 24 E i2 + 18 E i + 4(m -- 1) -- (m -- 1)[2(m- 1) + 2

i 1 i=1 i~1

+(n- m)[(m- 1)(2m 1)2 + m2] + 1

= n(4m3- 4rn2+ 5m-1)-2m4+ 4m3-6m2+3m-2.
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3.2.2.e Summary

Using Observation 3.1 to relate envelope size to the sum of wavefronts, Equation 3.2 which defines

the mean square wavefront, and all the results for our model problems, we can define the esize0

and mswf0 for all of our model problems.

esize(R5v)

mswf(Rs,,,)

esize(Rsd)

mswf (Rsd)

esize(R9~)

mswf(R9~)

esize(Rgd)

mswf(Rgd)

n(m2) - rn2 + m - 1

n(rn2 + m- 1) - rn2

4 2 13 2)
= m2+4m+2-m-n3 l(~m +4m-3-+--m

= n(2m2-2m+l)-2m3+m2-~m

: 4m2 -- 4m + 5 1 1 (2m:~ _ 4m2 + 6m -- 3 + 2)
m Tt m

The behavior of the seven point stencil is, either like the five point or the nine point depending

on the relationship between the ordering and the extra pair of neighbors. For example in a

vertical ordering (i.e., from top to bottom, left to right), if the stencil connects Northeast and

Southwest neighbors, the seven point stencil behaves exactly like the five point grid. Similarly, if

the diagonal ordering orders along the direction of the diagonal edges, it behaves like a five point

grid. However, if the diagonal edges are oriented the other way, then the results are the same as

a nine point stencil.

The most striking result is that the diagonal ordering is worse than the vertical ordering for

9 point stencils. Criticism about spectral orderings’ tendency to order rectangular grids with a
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nine point stencil along short columns instead of along the diagonal was an instigating factor

into this investigation. We found the results to be most enlightening.

3.2.3 History

There is an interesting history of work done in the envelope/wavefront reducing orderings.

Much of the work was inspired by frontal solvers which depended critically on the wavefront

being minimized. Early algorithms to reduce the envelope include the King [49], Gibbs-Poole-

Stockmeyer [36], and Gibbs-King [35] algorithms. Currently, the best two heuristics for the

envelope/wavefront reduction problem are a combinatorial algorithm by Sloan [73] and an al-

gebraic algorithm called the spectral ordering [9]. We present a brief history of each of these

algorithms in preparation for describing our contributions to the envelope/wavefront reduction

problem.

3.2.3.a King, Gibbs-Poole-Stockmeyer, and Gibbs-King

King [49] wrote one of the earliest algorithms for envelope reduction. His work was an essentially

greedy implementation to minimize the wavefront. King’s algorithm breaks ties by choosing the

vertex that was active for the longest period of time (equivalently, the active node with the

lowest numbered neighbor). King was also the first to discuss the importance of what Sloan calls

preactive nodes. King’s algorithm did not have a method for selecting a starting node. Instead

he suggests that the user choose several and keep the ordering with the best characteristics.

Gibbs, Poole, and Stockmeyer [36] tried to simultaneously minimize the bandwidth and the

envelope of a sparse matrix. To accomplish this, they concentrated primarily on the pseudo-

diameter algorithm. Specifically, they perform some post-processing on the level sets generated

at both ends of the pseudo-diameter to generate a third level set (possibly with multiple vertices

in level set L0) with a reduced max level set, and therefore resulting in a smaller bandwidth.

There is an interesting survey article by Gibbs, Poole, and Stockmeyer [37] including many other

envelope reducing ordering algorithms of the time.
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The Gibbs-King [35] algorithm is a combination of the Gibbs-Poole-Stockmeyer level structure

technique combined with numbering vertices on each level according to the King criterion. It is

generally regarded to produce the the best quality ordering of the three algorithms, though it is

the slowest [53].

3.2.3.b Sloan Ordering

Sloan [73] originally introduced his envelope/wavefront reducing ordering algorithm for undi-

rected and unweighted graphs. The idea of Sloan’s algorithm is to number vertices from one

endpoint of an approximate diameter in the graph, choosing the next vertex to number from

among the neighbors of currently numbered vertices and their neighbors. A vertex of maximum

priority is chosen from this eligible subset of vertices; the priority of a vertex has a "local" term

that attempts to reduce the incremental increase in the wavefront, and a "global" term that

reflects its distance from a second endpoint of the approximate diameter.

Duff, Reid, and Scott [26] have extended this algorithm to weighted graphs obtained from

finite element meshes, and have used these orderings for frontal factorization methods. The

weighted implementation is faster for finite element meshes when several vertices have com-

mon adjacency relationships. They have also described variants of the Sloan algorithm that

work directly with the elements (rather than the nodes of the elements). The Sloan algorithm

is a remarkable advance over previously available algorithms such as RCM [17], Gibbs-Poole-

Stockmeyer [36, 53], and Gibbs-King [35, 49] algorithms since it computes smaller envelope and

wavefront sizes.

3.2.3.c Spectral Ordering

Unlike the rest of the algorithms that are combinatorial in nature, the spectral algorithm is

algebraic, and hence its good envelope-reduction properties are intriguing. Barnard, Pothen, and

Simon [9] described this spectral algorithm that associates a Laplacian matrix with the given

symmetric matrix, computes an eigenvector corresponding to the smallest positive Laplacian
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eigenvalue, and then computes the permutation by sorting the components of the eigenvector in

monotonically increasing or decreasing order.

The spectral algorithm has been examined for a wide range of applications. Juvan and Mo-

har [46, 47] have considered spectral methods for minimizing the p-sum problem (for p ~ 1), and

Paulino et al. [64, 65] have applied spectral orderings to minimize envelope sizes. Additionally,

spectral methods have been applied successfully in areas such as graph partitioning [43, 66, 67],

the seriation problem [6], and DNA sequencing [39].

George and Pothen [34] analyzed the algorithm theoretically, by considering a related problem

called the 2-stun problem. They showed that minimizing the 2-sum over all permutations is

equivalent to a quadratic assignment problem, in which the trace of a product of matrices is

minimized over the set of permutation matrices. This problem is NP-complete; however, lower

bounds for the 2-sum could be obtained by minimizing over the set of orthogonal and doubly

stochastic matrices. (Permutation matrices satisfy the additional property that their elements

are nonnegative; this property is relaxed to obtain a lower bound.) This technique gave tight

lower bounds for the 2-sum for many finite-element problems, showing that the 2-sums from the

spectral ordering were nearly optimal (within a few percent typically). They also showed that

the permutation matrix closest to the orthogonal matrix attaining the lower bound is obtained

(to first order) by permuting the second Laplacian eigenvector in monotonic order. This justifies

the spectral algorithm for minimizing the 2-sum. These authors also showed that a family of

graphs with small (rt v) separators has small mean square wavefront (at most O(nl+v)), where 

is the number of vertices in the graph, and the exponent 3, >_ 1/2 determines the separator size.

While we were working on the envelope/wavefront reduction problem by improving Sloan’s

algorithm, there was independent work by Boman and Hendrickson [13] on the same problem,

but using multi-level heuristics. While their work was an improvement over the original Sloan

algorithm, it was not as successful as our improved algorithm.
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3.2.4 Contribution

For the most part, we follow Sloan [73], and Duff, Reid and Scott [26] in our work on the Sloan

algorithm. Our new contributions are the following:

¯ We show that the use of a heap instead of an array to maintain the priorities of vertices

leads to a lower time complexity, and an implementation that is about four times faster

on our test problems. Sloan had implemented both versions, preferring the array over the

heap for the smaller problems he worked with, and had reported results only for the former.

Duff, Reid, and Scott had followed Sloan in this choice.

¯ Our implementation of the Sloan algorithm for vertex-weighted graphs mimics what the

algorithm would do on the corresponding unweighted graph, unlike the Duff, Reid, and

Scott implementation. Hence we define the key parameters in the algorithm differently,

and this results in no degradation in quality when ordering compressed graphs.

¯ We examine the weights of the two terms in the priority function to show that our test

problems fall into two classes with different asymptotic behaviors of their envelope param-

eters; by choosing different weights for these two classes, we reduce the wavefront sizes

obtained from the Sloan algorithm, on the average, to 60% of the original Sloan algorithm

on a set of eighteen test problems.

¯ Together, the enhancements above enable the Sloan algorithm to compute small envelope

and wavefront sizes fast--the time it needs is in general between two to five times that of

the much simpler RCM algorithm.

¯ The analysis of the spectral algorithm suggests that while spectral orderings may also re-

duce related quantities such as the envelope size and the work in an envelope factorization,

they might be improved further by post-processing with a combinatorial reordering algo-

rithm. We introduce a variant of the Sloan algorithm as a post-processing step; creating a

spectral/sloan or algebraic/combinatoric hybrid algorithm.
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3.2.5 Fast Sloan Ordering

In this section we consider a weighted graph on a set of multi-vertices and edges, with integer

weights on the nmlti-vertices. We. think of the weighted graph as being derived from an un-

weighted graph, and the weight of a multi-vertex as the number of vertices of the unweighted

graph that it represents. The weighted graphs in our applications are obtained from finite el-

ement meshes, where neighboring vertices with the same adjacency structures are "condensed"

together to form multi-vertices. The weighted graph could potentially have fewer vertices and

many fewer edges than the original unweighted graph in many finite element problems. Duff,

Reid, and Scott [26] call the weighted graph the supervariable connectivity graph. Ashcraft [3]

refers to it as the compressed graph, and has used it to speed up the minimum-degree algorithm,

and Wang [76] used it for an efficient nested dissection algorithm.

Sloan’s algorithm [73] is a graph traversal algorithm that has two parts. The first part is the

pseudo-diameter algorithm (see Section 3.1) that selects a start vertex s and an end vertex e. The

second part then numbers the vertices, beginning from s, and chooses the next vertex to number

from a set of eligible vertices by means of a priority function. Roughly, the priority of a vertex

has a dynamic and static component: the dynamic component favors a vertex that increases the

current wavefront the least, while the static part favors vertices at the greatest distance from the

end vertex e. The computation-intensive part of the algorithm is maintaining the priorities of the

eligible vertices correctly as vertices are numbered. As each vertex is numbered all unnumbered

neighbors are updated.

3.2.5.a Eligible Vertices

At each step of the algorithm, vertices are in one of four mutually exclusive states. Any vertex

that has already been numbered in the algorithm is a numbered vertex. Active vertices are

unnumbered vertices that are adjacent to some numbered vertex. Vertices that are adjacent to

active vertices but are neither active nor numbered are called preactive vertices. All other vertices
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Algorithm 3.2 The Sloan algorithm for a vertex-weighted graph.

1.

2.
3.
4.

[ Permutation result ] = SloanOrder( const Graph * G,
const Graph: :vertex s, >const Graph: :vertex e,

const int wl, const int w2 )

{
// Initialization
int n = G->size() ;- //number of vertices
int normfact = [ dist(s,e) maXvEc, deg(v)J ; // normalization fa ctor
int priority [ n ] ; //priority of each vertex in G
statusType status [ n ] ; //status of each vertex in G
//status[ i ] is one of ’inactive’, ’preactive’, "active’ or ’numbered’

5.

6.
7.

8.

for i = I to n {
status[ i ] = inactive ;
priority[ i ] = -wl * normfact * deg( i ) + w2 * dist( i, 

}
status[ s ] = preactive ;

9.

10.
11.
12.

13.
14.
15.
16.

17.
18.

19.
20.
21.

22.
23.
24.

25.
26.

27.

//Main Loop
for k = 1 to n {

i = //vertex such that "priority[i]’ is max of all active or preactive vertices
for each j E adj( i ) 

if" ( ( status[ i ] == preactive ) 
( status[ j ] == inactive or preactive ) ) 
// ~’ becomes active, 7’ is numbered
priority[ j ] += (G->vwgt(i) + G->vwgt(j) ) * normfact 
status[ j ] = active ;
far_neighbors( j ) 

} else if ( ( status[ i ] == preactive and ( st atus[ j ] ==act ive )
// ’i’ moves from preactive to numbered
priority[ j ] += G->vwgt( i ) * normfact * wl,

) else if ( ( status[ i ] == active ) and ( status[ j ] == preactive 
// ~i" moves from preactive to active
priority[ j ] += G->vwgt( j ) * normfact * wl 
status[ j ] = active ;
far_neighbors( j ) 

} //end if elseif..
} //end for each...
result.new2old[ k ] = i;
result.old2new[ i ] = k;
status[ i ] = numbered ;

} //end for k ---- 1 to n ...
}//end 51oanOrder

void far_neighbors( Graph: :vertex j 

{
// ’J" is newly active, update any interested neighbors
for each gE adj( j ) 

if ( status[ g ] == inactive 
status[ ~ ] = preactive

}
priority[ g ] += G->vwgt( * normfact * wl ;

} //end for each ...
} //end far_neighbors
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~ ive

FIGURE 3.7: The Sloan algorithm in progress.

are inactive. Initially all vertices are inactive, except for s, which is preactive. Figure 3.7 shows

a small mesh being numbered by the sloan algorithm. Note the four different states.

At any step k, the sum of the sizes of the active verticesis exactly the size of the wavefront

at that step for the reordered matrix, wfk (PAPT), where P is the current permutation. Active

and preactive vertices comprise the set of vertices eligible to be numbered in future steps.

An eligible vertex with the maximum priority is chosen to be numbered next. The priority

function of a vertex i has two components: the increase in the wavefront size if the vertex was

numbered next, incr(i), and the distance from the end vertex, dist(i, 

3.2.5.b The Priority Function

Our implementation of the weighted Sloan algorithm on the weighted graph mimics what the

original Sloan algorithm would do on an unweighted graph, and thus we define the degrees of the

vertices and incr(i) differently fl’om Duff, Reid, and Scott [26]

We denote by size(i) the integer weight of a multi-vertex i. The degree of the multi-vertex 

deg(i), is the sum of the sizes of its neighboring multi-vertices. Let the current degree of a vertex

i, cdeg(i), denote the sum of tile sizes of the neighbors of i among preactive or inactive vertices.



44

It can be computed by subtracting from the degree of i the stun of the sizes of its neighbors

that are numbered or active. When an eligible vertex is assigned the next available number, its

preactive or inactive neighbors move into the wavefront. Thus

/ cdeg(i) + size(i), if i is preactive
incr(i)

[ cdeg(i), if i is active

The size(i) term for a preactive vertex i accounts for the inclusion of i into tile wavefront.

(Recall that the definition of the wavefront includes the diagonal element.) Initially, incr(i) 

deg(i) + size(i) since nothing is in the wavefront 

The second component Of the priority function, dist(i, e), measures the distance of a vertex 

from the end vertex e. This component encourages the numbering of vertices that are very far

from e even at the expense of a larger wavefront at the current step. This component is easily

computed for all i by a breadth first search rooted at e. We show cdeg0 incr 0 and dist 0 for all

eligible vertices in Figure 3.7.

Denote by P(i) the priority of an eligible vertex i during a step of the algorithm. The priority

function used by Sloan, and Duff, Reid and Scott is a linear combination of two components

P(i) = -W1 incr(i) + W2* dist(i, e),

where W1 and W2 are positive integer weights. At each step, the algorithm numbers next an

eligible vertex i that maximizes this priority function.

The value of incr(i) ranges from 0 to (A + 1) (where A is the maximum degree of 

unweighted graph G), while dist(i,e) ranges from 0 to the diameter of the graph G. We felt 

desirable for the two terms in the priority function to have the same range so that we could work

with normalized weights W1 and W2. Hence we use the priority function

P(i) = -W1 L(dist(s, e) /A)J * incr(i) + W2* dist(i, e).
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If the pseudo-diameter is less than the maximum degree, we set their ratio to one. We discuss

the choice of the weights later in this section.

3.2.5.c The Algorithm

We present in Algorithm 3.2 our version of the weighted Sloan algorithm. This modified Sloan

algorithm requires fewer accesses into the data structures representing the graph (or matrix) than

the original Sloan algorithm [73]. The priority updating in the algorithm ensures that incr(j)

is correctly maintained as vertices become active or preactive. When a vertex i is numbered,

its neighbors and possibly their neighbors need to be examined. Vertex i must be active or

preactive, since it is eligible to be numbered. We illustrate the updating of the priorities for

only the first case in the algorithm, since the others can be obtained similarly. Consider the

case when i is preactive and j is inactive or preactive. The multi-vertex i moves fl’om being

preactive to numbered, and hence moves out of the wavefront, decreasing incr(j) by size(i), 

thereby increases P(j) by W1 * [(dist(s, e)/A)] * size(i). Further, since j becomes active 

now included in the wavefront, it does not contribute in the future to incr(j), and hence P(j)

increases by W1 * [(dist(s, e)/A)J * size(j).

3.2.5.d The Choice of Weights

Sloan [73], and Duff, Reid and Scott [26] recommend the unnormalized weights W1 = 2, W2 = 1.

We studied the influence of the normalized weights W1 and W2 on the envelope parameters, and

found, to our initial surprise, that the problems we tested fell into two classes.

The first class is exemplified by the barth5 problem, whose envelope parameters are plotted

for various choice of weights in Figure 3.8. The value of each envelope parameter is scaled with

respect to the value obtained with the unnormalized weights W1 = 1 and W2 = 2 in the Sloan

algorithm. Thus this and the next Figures reveal the improvements obtained by normalizing the

weights in the Sloan algorithm.
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FIGURE 3.8: Envelope parameters of barth5 as a function of the weights W1 and W2.

The envelope parameters are plotted at successive points on the z-axis corresponding to

changing the weight W1 or W2 by a factor of two. The ratio of the pseudo-diameter to maximum

degree is 10 for this problem, and here large values of W1 lead to the smallest envelope size and

wavefront sizes. The normalized weights W1 = 2 and W2 = 1 suffice to obtain these values; note

the asymptotic behavior of the envelope parameters. The bandwidth has a contrarian behavior

to the rest of the parameters, and thus high values of W2 lead to small bandwidths for these

problems.

The second class is exemplified by the finance512 problem, whose envelope parameters are

plotted for various choice of weights in Figure 3.9. Again, the value of each parameter is scaled

by the value obtained by the Sloan algorithm with unnormalized weights W1 = 2, W2 = 1. The

ratio of the pseudo-diameter to maximum degree is 1. Here high values of W2 lead to small

envelope parameters. Note that the bandwidth follows the same trend as the rest of the envelope

parameters, unlike the first class.

A user needs to experiment with the weights to obtain a near-optimal value of an envelope

parameter for a new problem, since one does not know a priori which of the two classes it belongs

to. Fortunately, small integer weights suffice to get good results in our experiments, and hence

\
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FIGURE 3.9: Envelope parameters of finance512 as a function of the weights W1 and W2.

a set of good weights can be selected automatically by computing the envelope parameters with

a few different weights.

The results tabulated in Section 5.1 show that it is possible to reduce the mean square

wavefront by choosing one normalized set of weights for each problem in Class 1, and another

for each problem in Class 2, rather than the unnormalized weights (WI = 2, W2 = 1) used 

Sloan, and Duff, Reid and Scott. The weights we have used are W1 = 8, W2 = 1 for Class 1

problems, and W1 = 1, W2 = 2 for problems in Class 2. An automatic procedure could compute

the envelope parameters for a few sets of weights, and then choose the ordering with the smaller

values.

There are two limiting cases of the Sloan algorithm.

When W1 = 0, W2 ¢ 0, then the distance from the end vertex e determines the ordering,

and the Sloan algorithm behaves similarly to the Gibbs-Poole-Stockmeyer algorithm [36]. The

primary difference between the two is that Sloan’s algorithm does not use the post-processing to

improve the width of the level sets. Preactive nodes will never be numbered directly in this case.

This is different from the case when W1 is nonzero and W2 is much larger than Wt. Here, the

first term still plays a role in reducing the envelope parameters. This case is similar in character



48

to the Gibbs-King algorithnr, excepting again for the differences in level sets. The values of

envelope parameters obtained when the ratio W2/W1 is 216 are significantly smaller than the

values obtained when W1 = 0 and W2 ~ 0. Only neighbors and second-order neighbors of the

numbered vertices are eligible to numbered at any step, and among these vertices the first term

serves to reduce the local increase in the wavefl’ont when W1 is nonzero.

The second limiting case, when W2 = 0, W1 ~ 0, corresponds to a greedy algorithm in

which vertices are always numbered to reduce the local increase in wavefront. This greedy

algorithm does particularly poorly on Class 2 problems. This case is conceptually similar to

King’s algorithm for reducing wavefront [49].

The two classes of problems differ in the importance of the first, "local", term that controls

the incremental increase in the waveflont relative to the second, "global", term that emphasizes

the numbering of vertices far fl’om the end-vertex. When the first term is more important in

determining the envelope paraineters, the problem belongs to Class 1, and when the second

term is more important, it belongs to Class 2. We have observed that the first class of problems

represent simpler meshes: e.g., discretization of the space surrounding a body, such as an airfoil in

the case of barth5. The problems in the second class arise front finite element meshes of complex

three-dimensional geometrical objects, such as automobile frames. The f inance512 problem is a

linear program consisting of several subgraphs joined together by a binary tree interconnection.

In these problems, it is important to explore several "directions" in the graph simultaneously to

obtain small envelope parameters.

The bandwidth is smaller when larger weights are given to the second term, for both classes

of problems. This is to be expected, since to reduce the bandwidth, we need to decrease, over all

edges, the maximum deviation between the numbers of the endpoints of an edge.

The first term in the priority function emphasizes vertices with fewer neighbors--a greedy

strategy to reduce total wavefront by picking the minimum available at each step. The second

term emphasizes the need to number vertices farther away from the end vertex, injecting some

measure of global information into the method. Sometimes taking a hit early on (by numbering
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a vertex with many neighbors, hence increasing the wavefront size significantly) may benefit in

the long run.

Refering again to Figure 3.7, if both weights W1 and W2 are set to one, then the two highest

priority vertices at this step are "a" and "c’. Whichever is numbered, the other vertex and %"

will have the highest priority at the beginning of the next step.

3.2.5.e Effect of Preactive Nodes

The execution time of the Sloan algorithm is dominated by the size of the priority queue it must

maintain for all active and preactive vertices. At frst glance, it would seem that the distinction

between preactive and inactive serves only to properly handle the start vertex and initialize the

main loop.

While it is true that for many cases a preactive vertex is never numbered -- with the manda-

tory exception of the start vertex, it is also true that for many problems preactive nodes are

chosen frequently enough to make their exclusion detrimental to the algorithm. We use a simple

example to illustrate why this is so.

Consider a star-shaped graph with n vertices, where n - 1 vertices (called points) have but

a single edge to the ~.~th vertex (called the hub). In this case, the length of the diameter is two,

with any two points sufiqcing as the start and end vertices.

The Sloan algorithm will naturally number the start vertex, and the wavefront will include

the start vertex and the hub. The algorithm then numbers all the other points, and each one

having a wavefront of that point and the hub. When all has been numbered except the hub and

the end vertex, they can be numbered in any order without affecting the wavefront.

Consider now a modified Sloan algorithm where nodes are not considered for numbering until

they are active. This hypothetical algorithm would number the start vertex, with the start vertex

and the hub in the wavefront. Then, since the only active vertex is the hub, this hypothetical

algorithm would be forced to number it next. The wavefront at this stage would be n - 1, fl’om
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the newly numbered hub and the remaining n - 2 points in the star. For each step thereafter,

the size of the wavefront would reduce by one.

Given this illustration, it is clear to see the function that preactive nodes can play. It allows

the algorithm to avoid vertices of high degree until a large enough number of its low degree

neighbors have been numbered. In the case of a n - 1 point star, omiting preaetive nodes would

increase the maximum waveflont from two to r~ - 1.

3.2.5.f The Accelerated Implementation

In the Sloan algorithm, the vertices eligible for numbering are kept in a priority queue. Sloan [73]

implemented the priority queue both as an unordered list in an array and as a binary heap,

and found that the array implementation was faster for his test problems (all with less than

3,000 vertices). Hence he reported results from the array implernentation only. Duff, Reid, and

Scott [26] have followed Sloan in using the array implementation for the priority queue in the

Harwell library routine MC40.

This is an unfortunate accident because the heap implementation is provably better. In [50]

we proved that the heap implementation runs in O(rt log n) time, while the array implementation

requires O(n1’5) time for two-dimensional problems, and O(n5/3) time for three-dimensional

problems. In practice, we found even the smallest problems ran faster with a heap.

This difference in running time requirements is experimentally observed as well. In Figure 3.10

we compare the times taken by the array and heap implementations of the Sloan algorithm

relative to our implementation of the RCM algorithm. Tile RCM algorithm uses a fast pseudo-

diameter algorithm described by Duff, Reid, and Scott [26]. In a response to our research, Reid

and Scott [69] abandoned MC40 and implemented MC60 and MC61 according to most of out’

research. Nevertheless, they assert that tile array implementation is faster for small problems,

(less that 5000 vertices).

For the eighteen matrices in Table 5.1, the mean time of the ArraySloan was 11.3 times that

of RCM, while the median time was 8.2 that of RCM. However, the mean cost of the HeapSloan
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FIGURE 3.10: Relative timing performance of RCM, ArraySloan, and HeapSloan algorithms.

was only 2.5 times of RCM, with the median cost only 2.3. The greatest improvements are seen

for the problems with greater numbers of vertices or with higher average degrees.

We have also computed the times taken by MC40B to order these problems, and found them

to be comparable to the times reported here for the ArraySloan implementation, inspite of the

different programming languages used (Fortran for MC40B and C for ours.)

We emphasize that this change in the data structure for the priority queue has no significant

influence on the quality of the envelope parameters computed by the algorithm. Minor differences

might be seen due to different tie-breaking strategies.

3.2.6 Complexity Analysis

In this Section we analyze the computational complexity of the Sloan algorithm using both heap

and array implementations. The analysis has the interesting feature that the time complexity
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depends on the maximum wavefront size, a quantity related to the mean square wavefront that

the algorithm is seeking to reduce. Nevertheless, it is possible to get a priori complexity bounds

for problems with good separators. The results clearly show the overwhelming superiority of the

heap implementation; an analysis of the complexity of the Sloan algorithm is not available in

earlier published work.

The major computational difference lies in the implementation of the priority queue (see

Section 3.2.5.f). We call these two implementations ArraySloa’n and HeapSloan according to the

data structure used to implement the priority queue.

For the array implementation, the queue operations insert (), increment_priority (), and

delete() are all O(1) operations, but the max_priority() operation (finding the vertex 

the maximum priority) is O(m), where ru is the size of the queue. All operations on the binary

heap are O(logm) except max_priority(), which is O(1).

To continue with our analysis, we examine Algorithm 3.2 on page 42. It is immediately

clear that the function far_neighbors() (lines 25--27) is O(deg(j)) for ArraySloan. 

easily bound this by A = maxl<i<,~(deg(i)). For HeapSloan, far neighbors () for HeapSloan 

O(A, logm), where m is the maximum size of the priority queue. This is because the priority

updates require reheaping.

The Sloan function (lines 1-24) has three loops: the initialization loop (lines 5-7), the outer

ordering loop (lines 9-24), and the inner ordering loop (lines 11-21). The initialization loop 

the same for either implementation, and is easily seen to require O(]Er) time.

Consider now the ArraySloan implementation. For each step of the outermost loop starting

at line 9, it must find and remove the vertex of maximum priority, requiring O(ra) time. The

inner loop is executed at most A times. The worst case for the inner loop is when the priority

is incremented and the far neighbors routine is called, and this requires O(A) time. Thus the

worst case running time for the ordering loop is O(IV] , (m + A2)). For the entire algorithm 

is o(Ivl, + 2) +Izl).
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For the HeapSloan implementation, at each step of the outermost loop starting at line 9, the

algorithm must delete the vertex of maximum priority, and then rebuild the heap; this takes

O(logm.) time. The inner loop is executed at most A times. The worst case for the inner

loop is when the priority is incremented and the far neighbors function is called. This time

is O(A, logm). The worst case time complexity for the ordering loop of HeapSloan is thus

O(V] * 2 *logm). For th e entire al gorithm it is O(]V], A2 * l ogm + IEI).

These bounds can be simplified further. The maximum size of the queue can be bounded

by the smaller of (1) the product of the maximum wavefront of the reordered graph and the

maximmn degree, and (2) the number of vertices n. Then the complexity of ArraySloan 

O(IV[ , A, maxwf), while the complexity of HeapSloan is O([V[ * 2 * log(maxwf ¯ A)). If

consider degree-bounded graphs, as finite element or finite difference meshes tend to be, then

the ArraySloan implementation has time complexity O(IVI , maxwf + IE[), while the HeapSloan

implementation has O(IVI * log(maxwf) IEI)-

These bounds have the unsatisfactory property that they depend on the maximmn wavefront,

a quantity that the algorithm seeks to compute and to reduce. To eliminate this dependence, we

will restrict ourselves to important classes of finite element meshes with good separators.

The class of d-dimensional overlap graphs (where d _> 2) whose degrees are bounded in-

cludes finite element graphs with bounded aspect ratios embedded in d dimensions and all planar

graphs [60]. Overlap graphs have O(n(~l-1)/d) separators that split the graph into two parts with

the ratio of their sizes at most (d + 1)/(d + 2). Hence the maximum wavefront can be bounded

by O(n(d-1)/d) for a modified nested dissection ordering that orders one part first, then the

separator, and finally the second part.

It is interesting to note that the wavefront at any step also forms a separator. If we assume that

the maximum wavefront attained by the Sloan ordering is bounded by the size of the separator,

then we can conclude that the HeapSloan implementation requires O(rtlog~t) time while the

ArraySloan implementation requires O(n(2d-1)/d) time for a d-dimensional overlap graph. For
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a planar mesh (d = 2), the ArraySloan implementation requires O(na/2)-time, while for a three

dimensional mesh with bounded aspect ratios (d = 3), its time complexity is O(nS/a).

3.2.7 Sloan Refinement

The hybrid algorithm consists of two steps: first compute the spectral ordering; then use a

modification of the Sloan algorithm to refine the ordering locally.

To change the Sloan algorithm from one that computes an ordering from scratch to one

that refines a given ordering, we need to modify the selection of start and end nodes, and the

priority function. We use input orderin9 in this section to describe the ordering of the matrix

immediately before the Sloan refinement is performed. In our implementation, this input ordering

is the spectral ordering, though the refining algorithm can work with any input ordering.

The Sloan algorithm requires a start node to begin numbering from, and an end node to

compute the priority function. We choose the start node s to be the first node and the end node

e to be the last node in the input ordering. Hence the burden of finding a good set of endpoints is

placed on the spectral method. Experience suggests that this is where it should be. The spectral

method seems to have a broader and more consistent view than the local diameter heuristic.

This feature alone yields improved envelope parameters over the Sloan algorithm for most of our

test problems.

The priority function is

P(i) = -W1 * [(n/A)J * incr(i) + W2 * dist(i, e) - Wa 

The first two terms are similar to the priority flmction of the Sloan algorithm, except that the

normalization factor has n, the number of vertices in the numerator, rather than the pseudo-

diameter. Tile latter is not computed in this context, and this choice makes the first and third

term range from 1 to r~.
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This function is sensitive to the initial ordering through the addition of a third weight, W3. For

IG3 > 0, higher priority is given to lower numbered vertices in the input ordering. Conversely, for

W3 < 0, priority is given to higher numbered vertices. This effectively performs the refinement

on the reverse input ordering, provided s and e are also reversed. There is some redundancy

between weighting the distance from the end in terms of the number of hops (dist(i, e)) and the

distance from the end in terms of the input ordering (i).

Selection of the nodes s and e and the new priority flmction are the only algorithmic modifi-

cations made to the Sloan algorithm. The node selection, node promotion, and priority updating

scheme (see Fig. 3.2), are unchanged.

The normalization factor in the first term of the priority function makes the initial influence

of the first and third terms roughly equal in magnitude when W1 and W3 are both equal to 1.

The weight W2 is usually set, to one. This makes it a very weak parameter in the whole algorithm,

but small improvements result when its influence is nonzero. If the component of the Fiedler

vector with the largest absolute value has the negative sign, we set W3 = -1 and swap s and e.

Otherwise, we set W3 = I and use the nondecreasing ordering of the Fiedler vector.

For Class 1 problems, higher values of W1 can lead to improvements in the envelope parame-

ters over the choice of W1 = 1, even though it is slight in most cases. For Class 2 problems, use

of W1 = 1, W2 = W3 = 2 can lead to improvements as well.

3.2.8 Applications

This section discusses preliminary evidence demonstrating the applicability of the orderings we

generated. In Section 3.2.8.a we describe how a reduction in mean square wavefront directly

translates into a greater reduction in cpu-time in a frontal faetorization. We also discuss the

impact of these orderings on incomplete Cholesky (IC) preconditioned iterative solvers in Sec-

tion 3.2.8.b. Finally in Section 3.2.8.c we list other areas where the envelope/wavefront reduction

either has been applied or shows promise of being applied successfully.
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bcsstk30

skirt

Initial
RCM
Sloan
Spectral
Hybrid
Initial
RCM
Sloan
Spectral
Hybrid

Sun SPAP~C20
Ordering

Time
0
3.7
6.1

11.9
14.6
0
5.0
8.4

18.6
22.6

Cray-J90
Frontal Solve

Time Flops
1106 8.7e~-10
1649 1.4e+11
989 7.5e+10
188 1.1e+10
205 1.1e÷10

2427 2.1e+11
2233 1.9e÷11
1754 1.4e÷11
979 7.6e+10
980 7.3e+10

TABLE 3.1: Results of two problems on a CRAY-J90 using MA42.
seconds.

3.2.8.a Frontal Methods

Times reported are in

The work in a frontal Cholesky factorization algorithm is

work(A) = ~1 ~ Iwfi(A)l (iwfi(A) I + 3)
i=1

Hence a reduction in the mean-square wavefront leads to fewer flops during Cholesky factor-

ization. Duff, Reid, and Scott [26] have reported that Sloan orderings lead to faster frontal

factorization times than RCM orderings. Barnard, Pothen and Simon [9] have reported similar

results when spectral orderings are used.

Two problems were run by Dr. Jennifer Scott on a single processor of a Cray-J90 using the

Harwell frontal factorization code MA42. The matrix values were generated randomly. (The

orderings used were obtained earlier than the results reported in Appendix A; however, these

results suffice to show the general trends.) The results in Table 3.1 show a general correlation

between mean square wavefronts (proportional to flops) and factorization times. The spectral

ordering enables the factorization to be computed about 5.2 times faster than the Sloan ordering

for tile bcsstk30 problem; this ratio is 1.8 for the skirt problem. The hybrid does not improve

factorization times over the spectral ordering for these problems.
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body. y-5
JvJ = 18,589
Izl = 55,1a2

Level 0

Level 2

IIRLIF
nnz(L)

iteration count
cpu time

flops

IIRIlu
nn~(L)

iteration count
cpu time

flops

bcsstk17 IIRIIF
IV] = 10,974 nnz(L)
[E[ = 208,838 iteration count

Level 2 epu time
flops

Ordering
RCM Sloan Spectral Hybrid

3,608 2,598 9,166 7,276
73,721 73,721 73,721 73,721

756 497 1,203 1,009
1,103 726 1,715 1,405

6.8e+08 4.5e+08 1.1e+09 9.1e+08

1,430 885 988 501
128,854 126,141 128,121 126,319

457 231 356 265
726 376 564 422

5.1e+08 2.6e+08 4.0e+08 2.9e-1-08

6.5e+08 6.5e+08 7.3e÷08 1.9e+09
470,304 473,017 486,524 474,935

422 323 320 179
1131 894 871 503

1.1e+09 9.5e+08 9.5e+08 5.2e+08

TABLE 3.2: Convergence of preconditioned CG on body. y-5 and bcsstkl7.

3.2.8.b Incomplete Cholesky Preconditioning

In this section we report preliminary experiments on the influence of our orderings on precondi-

tioned conjugate gradients (CG). We precondition CG with an incomplete Cholesky factorization

(IC(k)) that controls k, the level of the fill introduced.

Since the envelope is small, we confine fill to a limited number of positions, and hope to

capture more of the character of the problem with fewer levels of fill. However, a tighter envelope

is only one of the factors that affect convergence. For instance, orderings must respect numerical

anisotropy for fast convergence.

Our preliminary results have been mixed. In Table 3.2 we show information pertaining to

two problems that are representative of our data. It is worth noting how strongly the norm

of the remainder matrix for a given ordering is a predictor of iteration counts. The body.y-5

problem shows that the Sloan ordering can be very effective in reducing the iteration count. This

problem is a 2-dimensional mesh with an aspect ratio of 10-5. In the case of poor aspect ratios,

a weighted Laplacian should be more appropriate for computing the spectral ordering, but we
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defer this topic for future research. Duff and Meurant [24] indicate that ordering becomes more

significant when the problem becomes more difficult (discontinuous coefficients, anisotropy, etc.).

Another problem from the Harwell-Boeing collection bcsstki7 did not converge quickly for

levels of fill below two, indicating that it is a difficult problem. The rate of convergence at two

levels of fill shows that, the new ordering reduces the iteration count by ahnost half that of its

closest competitor. Since envelope reduction concentrates fill, it is possible that the benefits of

the hybrid ordering are maximized when more than one level of fill is allowed.

3.2.8.c Other Promising Applications

The envelope/wavefront reducing ordering problem also has applications that extend beyond the

immediate domain of sparse matrix computations.

Work has been done in mapping genomics problems to the envelope/wavefront reduction

problem [6]. In this problem, long strands of DNA are randomly cut to a manageable size and

sequenced. Then the collection sequences must be reassembled by finding the greatest amount of

overlap in the known sequences. Spectral methods are particularly useful in this context because

they can tolerate some amount of error in the system.

Sloan’s algorithm has also shown some promise in optimizing sparse kernels for cache perfor-

mance [77, 79]. The wavefront reducing ordering produced by the Sloan algorithm can increases

temporal locality of the data in some sparse matrix computations.

Along a similar vein, these orderings may be useful in spatial databases, particularly for

ordering the large amounts of data on disk to reduce paging when performing a query. Currently

proposed algorithms, far from ideal [72], are space filling curves (primarily row order, Peano-

Hilbert, and Morton/Z-order). Space filling curves have the property that they enumerate points

in n-dimensional space such that if any two points are close to each other in the enumeration,

then they lie close to each other in space. The converse, which is what is needed in this context,

is decidedly not true. Heuristics for the envelope/wavefront reduction problem have this distance
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preserving metric when ordering the vertices in a graph -- essentially mapping from a higher

dimensional space into a one dimensional space.

3.3 Fill Reduction

Sections 3.3.1-3.3.2 and 3.3.4 describe how fill is created and provide graph models for visualizing

and implementing the heuristics. Each of these three sections uses Figure 3.13 to reinforce the

concepts presented. Section 3.3.3 reviews some known optimality results for the fill reduction

problem. Section 3.3.5 provides a brief introduction to the minimum degree algorithm and its

derivations. We discuss our complexity analysis of MD and MMD in Section 3.3.6, and show

what this means in terms of runtime for some model problems in Section 3.3.7.

3.3.1 Definition of Fill

Direct methods rely on factoring the symmetric matrix A into the product LDLT, where L is a

lower triangular matrix, and D is a diagonal matrix. The factor L is computed using Cholesky

factorization a symmetric variant of Gaussian elimination. The factor L has nonzeros in all

the same positions2 as the lower triangle of the original matrix A, plus additional nonzeros in

positions that were zero in A, but induced by the factorization. These additional nonzeros are

fill elements. The presence of fill increases both the storage required to hold the factor and the

computational work required to generate it. The amount of fill created depends entirely on the

nonzero structure of the matrix, and the order in which the rows/columns are factored.

An example is provided in the first column of Figure 3.13, showing non-zeros in original

positions of A as "x" and fill elements as %". This example incurs two fill elements. The order

in which the factorization takes place, greatly influences the amount of fill. The matrix A is

often permuted by rows and columns to reduce the number of fill elements, thereby reducing

storage and flops required for factorization. Given the example in Fig. 3.13, the elimination

2No "accidental" cance]lations will occur during factorization if the numerical values in A are algebraic
indeterminates.
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order {2, 6, 1, 3, 4, 5} produces only one fill element.

example.
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This is the minimum amount of fill for this

3.3.2 The Elimination Graph

The graph G of the sparse matrix A is a graph whose vertices correspond to the columns of A.

We label the vertices 1...n, to correspond to the n columns of A. An edge (i,j) connecting

vertices i and j in G exists if and only if aij is nonzero. By symmetry, aji is also nonzero so the

graph is undirected.

The graph model of symmetric Gaussian elimination was first introduced by Patter [63]. A

sequence of elimination graphs, Gk, represent the fill created in each step of the factorization.

The initial elimination graph is tile graph of the matrix, Go = G(A). At each step k, let vk be

the vertex corresponding to the kTM column of A to be eliminated. The elimination graph at the

next step, Gk+l, is obtained by adding edges to make all the vertices adjacent to vk pairwise

adjacent to each other, and then removing v~ and all edges incident on vk. The inserted edges

are fill edges in the elimination graph. This process repeats until all the vertices are removed

from the elimination graph. The example in Fig. 3.13 illustrates the graph model of elimination.

Although the elimination graph is an important conceptual tool, it is not used in modern

implementations because the amount of storage required to represent it can grow during elim-

ination. When a vertex vk is removed with degree d there are potentially d(d- 1)/2 edges to

add. Therefore the storage required for an elimination graph can grow like the size of the factor,

and cannot be predetermined. In practice a quotient 9raph is employed to implicitly represent

an elimination graph in the same storage as G(A).

3.3.3 Known Optimality Results

The Fill Reduction problem is a known NP-complete problem [78] that is of fundamental impor-

tance in scientific computing. As such, this problem has garnered a great deal of attention and

a large number of ordering heuristics. Performance guarantees, however, are harder to find.
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For ordering algorithms based on Minimum Degree, there is a negative result by Berman and

Schnitger [10] where for a torus T~ with n = k2 vertices where h/4 is a power of 3, there exists a

Multiple Minimum Degree (MMD) ordering that produces a factor with hi°g34 fill and 15 l oga 4

arithmetic. The lower bounds for a T~ torus with n = k2 vertices is O(nlgn) fill and O(nla)

arithmetic. Determining the worst possible performance for MMD on a toms remains an open

problem.

For Nested Dissection (ND) algorithms, Agrawal, Klein and Ravi [1] have proven that their

polynomial nested dissection algorithm guarantees a factor of size O(min(x/dlog4 n, m1 logaa n))

and requiring O(dlog° n) operations to calculate, where d is the maximum number of non-zero

elements in any row or column of the n x n coefficient matrix. They also show that this result is

within a factor of O(x/dlog4 n) of the optimum for fill and a factor of O(dlog6 n) for operation

count. By using a minimum node (non-polynomial) separator algorithm, they prove that there

exists a nested dissection ordering with the tighter bounds of O(v~log2 n) size factor requiring

(_9(d log4 n) operations to calculate, where d is the maximum number of non-zero elements in any

row or column of the general, symmetric n x n coefficient matrix.

Tighter bounds have been found for restricted classes of graphs such as trees [45], planar

graphs [55], and overlap graphs [60]. All of these arguments for ND orderings hinge on guarantees

of the partition imbalance and separator size.

Blair, Heggernes, and Telle [11] consider the problem of taking an arbitrary filled graph G+

of an original graph G and obtaining a graph M that is both a minimM filled graph of G and a

subgraph of G+. They report an O(f(e + f)) algorithm that solves this problem and computes

the corresponding elimination ordering, where e is the number of original edges (e = IE(G)I) and

f is the number of fill edges (IS(a+)l - IE(a)l).

3.3.4 The Quotient Graph

A quotient graph is an implicit representation of an elimination graph. It is designed specifically

for greedy fill-reducing orderings such as MMD [30, 31]. Eliminating nodes does not require
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1

FIGURE 3.14: Example of a quotient graph. The nodes are represented as circles, and enodes
as boxes. The reachable set of a node is the union of the set of adjacent nodes and the set of all
nodes adjacent to adjacent enodes.

explicit addition of fill edges to the quotient graph, but it does impose an extra level of indirection

to compute certain quantities such as vertex degree. Thus, the quotient graph is immune to

the effects of fill. This is vital since the amount of fill is known only after the ordering step.

The quotient graph has two distinct kinds of vertices: supernodes and enodes3. A supernode

represents a set of one or more uneliminated columns of A. Similarly, an enode represents a set

of one or more eliminated columns of A. Tile initial graph, Go, consists entirely of supernodes

and no enodes; further, each supernode contains one column. Edges are constructed in the same

manner as in the elimination graph. The initial quotient graph, Go, is identical to the initial

elimination graph, Go, which can be seen in Figure 3.13.

When a supernode is eliminated at some step, it is not removed from the quotient graph;

instead, the supernode becomes an enode. Enodes are important because they indirectly represent

the fill edges in the elimination graph4. To demonstrate how, we first define a reachable path in the

quotient graph as a path (i, el, e2,.., ep,j), where i and j are supernodes in G~,: and el,e2,.., ev

are enodes. The number of enodes in the path can be zero. We will say that a supernode j is

3Also called "eliminated supernode" or "element" elsewhere.
4Where d is the degree of the vertex in the elimination graph.



65

reachable fl’om a supernode i in Gt~ if there exists a reachable path from i to j. Similarly i is

reachable from j since the path is undirected. Since the number of enodes in the path can be

zero, adjacency in ~k implies reachability in gk. Therefore if two supernodes i,j are reachable

in the quotient graph gk, then the corresponding vertices i,j in the elimination graph Gk are

adjacent in Gk.

The reachable set of a vertex is simply all vertices that are reachable from a vertex, not

including itself. Figure 3.14 shows a sample quotient graph with the reachable sets and their

sizes for each node. For the purposes of this discussion we leave the reachable set of an enode

undefined. Conceptually the reachable set of a supernode s in the quotient graph is identical

to the adjacency set of s in the elimination graph. Thus the quotient graph is an implicit

representation of an elimination graph.

In practice, the quotient graph is aggressively optimized; all non-essential enodes, supernodes,

and edges are deleted. Since we are only interested in paths through enodes, if two enodes are

adjacent they are amalgamated into one. So in practice, the number of enodes in all reachable

paths is limited to either zero or one. Alternatively, one can state that, in practice, the reachable

set of a supernode is the union of its adjacent supernodes and all supernodes adjacent to its

adjacent enodes. This amalgamation process is one way how some enodes come to represent

more than their original eliminated column.

Supernodes are also amalgamated but with a different rationale. Two supernodes are indis-

tinguishable if their reachable sets (including themselves) are identical. When this occurs, all but

one of the indistinguishable supernodes can be removed from the graph. The remaining supern-

ode keeps a list of all the columns of the supernodes compressed into it. When the remaining

supernode is eliminated and becomes an enode, all its columns can be eliminated together. The

search for indistinguishable supernodes can be done at the beginning of the algorithm, before

any supernodes are eliminated using graph compression [3]. More supernodes become indistin-

guishable as elimination proceeds. An exhaustive search for indistinguishable supernodes during
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FIGURE 3.15: Quotient Graph Transformation in Detail. In this figure we show the transforma-
tion of a quotient graph between steps 2 and 3 of Figure 3.13. We start with an updated quotient
graph (a). Next, we eliminate supernode 3, which causes it to form an enode that absorbs all
adjacent enodes (b). Now the edge between supernodes 4 and 5 is redundant since they are
reachable through the new enode 3, so the edge is removed (c). Finally, supernodes 5 and 6 are
indistinguishable and merged into a single supernode.

elimination is prohibitively expensive, so it is often limited to supernodes with identical adjacency

sets (assuming a self-edge) instead of identical reachable sets.

Edges between supernodes can also be removed in certain instances during factorization.

When a pair of adjacent supernodes share a common enode, they are reachable through both

the shared edge and the shared enode. In this case, the shared edge can be safely removed as it

is redundant. This not only improves storage and speed, but allows tighter approximations to

supernode degree as well.

Going once more to Fig. 3.13, we consider now the quotient graph. Initially, the elimination

graph and quotient graph are identical. After the elimination of column 1, we see that supern-

ode 1 is now an enode. Note that unlike the elimination graph, no edge was added between

supernodes 3 and 4 since they are reachable through enode 1. After the elimination of column

2, we have actually removed an edge between supernodes 5 and 6. This was done because the

edge was redundant; supernode 5 is reachable from 6 through enode 2. The transformation after

eliminating supernode 3 involves several steps which are shown in Figure 3.15. First, supernode

3 becomes an enode and absorbs enode 1 (including its edge to supernode 4). Now enode 3 

adjacent to supernodes 4, 5 and 6. Next, the edge between supernodes 4 and 5 is redundant

and can be removed. At this point 4, 5, and 6 are indistinguishable. However, since we cannot

afford an exhaustive search, a quick search (by looking for identical adjacency lists) finds only

supernodes 5 and 6 so they are merged to supernode {5, 6}. The rest of the transformations are

not as complicated. When supernode 4 is eliminated, it becomes an enode and absorbs enode 3.
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Finally supernode {5, 6} is eliminated. The relative order between columns 5 and 6 at this point

(and between any columns within a supernode) has no effect on fill.

3.3.5 Greedy Fill-Reducing Heuristics

The simplest heuristic for computing a greedy fill-reducing ordering is to repeatedly select and

remove a supernode from the quotient graph having minimum degree. One could implement a

greedy heuristic that computed the minimum fill induced by eliminating each supernode, but it

is too expensive in practice [70]. The degree of a supernode puts an upper bound on the amount

of fill that could be induced by its elimination.

Since updating the quotient graph and recomputing vertex degrees is so expensive, a common

optimization is to use Minimum Degree with a lazy update. This is possible because when a

supernode is eliminated, only its neighbors have been changed. Therefore, if one can find a large,

independent set of supernodes of minimal degree, they can all be eliminated before updating the

quotient graph. This is the Multiple Minimum Degree Algorithm [56]. We show the Multiple

Minimum Degree algorithm defined in terms of a quotient graph in Fig. 3.3.

Another recent optimization is to compute only the approximate degree of a supernode instead

of its exact degree. This Approximate Minimum Degree (AMD) algorithm [2] can do faster

degree computations, but disallows multiple elimination in order to obtain tighter bounds on

the approximate degrees. The MMD algorithm in Algorithm 3.3 could be changed to an AMD

algorithm with the following modifications: 1) the inner while loop in line 4 would be executed

exactly once for each iteration of the outer loop and 2) the quotient graph optimizations and

degree computations would be different (faster).

These two algorithms, MMD and AMD are the most different of all the fill-reducing orderings

implemented in Spitl~)Ie. All the others use either the MMD or AMD subsystems and simply replace

the degree computation with a more robust (and expensive) heuristic such as "minimum increase

in neighbor degree" or "modified minimum deficiency". Table 3.3 shows a list of algorithms and

references for further study.



Algorithm 3.3 The Multiple Minimum Degree algorithm defined in terms of a

quotient Graph.
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1.

2.
3.
4.

5.
6.
7.

8.

9.

10.

11.

12.
13.
14.
15.

k~O

while ( k<n ) 
Let m be the minimum known degree, deg(x), of all x 6 Qk.

while m is still the minimum known degree of all x 6 jCk {

Choose supernode xk such that deg(xk)---

[or all of the p columns represented by supernode xk {
Number columns (~ + ]) ... (k -Sp).

}
Form enode ek from supernode xk and all adjacent enodes.
[or all supernodes x adjacent to ek {

Label deg(x) as C~unknown.’’

}
ke--k+p

)
[or all supernodes x where deg(x) is unknown 

Update lists of adjacent supernodes and enodes of x.

Check for various ~uotientGraph optimizations.

Compute deg(x).

}

There are a list of standard features in modern implementations that requires introduction.

For more detailed information, refer to the survey paper by George and Liu [32].

¯ Multiple Elimination [56]. Lazy update of the graph. When a vertex is eliminated

from the elimination graph, the entire graph does not change, only the neighbors of the

newly eliminated vertex. Multiple elimination eliminates an independent set of vertices of

minimal degree before updating the elimination graph.

¯ Mass Elimination [33]. When eliminating a vertex vk, there is often a subset of vertices

adjacent to vk that can be eliminated immediately after vk with no additional fill, and

saving additional elimination graph updates.

¯ Indistinguishable Nodes. Related to mass elimination. If at some step, k, in the elimi-

nation process two vertices vi, vj C Gk are adjacent, but otherwise have identical adjacency

lists, we call them indistinguishable nodes (see also Definition 2.5). Furthermore, if two
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Abbreviation
MMD
AMD
MMDF
MMMD
AMF
AMMF
AMIND

Algorithm Name
Multiple Minimum Degree
Approximate Minimum Degree
Modified Minimum Deficiency
Modified Multiple Minimum Degree
Approximate Minimum Fill
Approximate Minimum Mean Local Fill
Approximate Minimum Increase in
Neighbor Degree

Primary Reference
Liu [56]
Amestoy, Davis and Duff [2]
Ng and Raghavan [62]
Ng and Raghavan [62]
Rothberg [70]
Rothberg and Eisenstat [71]
Rothberg and Eisenstat [71]

TABLE 3.3: Several Greedy Fill-Reducing Heuristics.

nodes are indistinguishable in Gk, they remain indistinguishable in Gk+l. Since they are

indistinguishable, their degrees are identical, saving a degree computation for one of them.

Furthermore, once one node is eliminated, the other indistinguishable nodes can be elimi-

nated immediately afterward via mass elimination.

¯ Taken together, mass elimination and indistinguishable nodes offer an important advantage.

We can group nodes into supernodes and need to compute the degree and update the

elimination graph only once for each supernode. The size of each supernode must be stored

to accurately compute the degree.

¯ Incomplete Degree Update [27]. Given two nodes, vi, vj in Gk, where the set of adjacent

vertices of vi is properly contained by vj then vj is said to be outmatched by vi. The

outmatched vertex need not have its degree computed again until vi is eliminated.

¯ Quotient Graph [30]. Emulates an elimination graph in a fixed amount of storage through

an extra level of indirection through enodes. Quotient graphs can have the same interface

as an elimination graph, but must handle internal data differently.

Instead of removing an eliminated vertex, a quotient graph relabels the vertex as an enode.

Any edges between two vertices that are members of the same enode are redundant and

can be removed.
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To compute the degree of a vertex in the elimination graph, a quotient graph must compute

the size of its reachable set. The reachable set of a vertex in a quotient graph is simply the

size of the set of all vertices directly adjacent through an edge, or a members of a common
J

enode.

¯ Element Absorption [25]. Element absorption is to enodes, what indistinguishable nodes

are to vertices. Since a quotient graph provides a compact representation of an elimination

graph by storing enodes instead of fill edges, one can merge any two adjacent enodes into

a superenode.

¯ External Degree [56]. Given a minimum degree algorithm which takes advantage of

supernodes, the degree of a supernode need not include its own weight. The intuition is

that all the vertices in a supernode are already an enode and so will not induce any new

fill.

¯ Preeompression [3]. Additional savings can be made if tile graph is compressed before

performing the minimum degree ordering. Precompressing the graph is a standard tech-

nique employed by many ordering and partitioning algorithms, the earliest reference to this

technique is Duff, Reid, and Scott [26].

¯ Approximate Update [2, 38]. Instead of computing the degree of each supernode exactly,

simply compute an upper bound. This can be done in a multiple elimination setting, but it

double counts any supernode that is reachable through two different elimination paths [38].

Amestoy, Davis, and Duff [2] were able to tighten this bound by double counting only

supernodes that are reachable through two different elimination paths, neither of which

being though the most recently formed enode. This added restriction also prevents the

code from using multiple elimination.

¯ Alternatives to Minimizing Vertex Degree [62, 70, 71]. Most recent work focused on

improving the quality of the ordering by eliminating supernodes on a more accurate basis
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3.3.6 Asymptotic Complexity Analysis

Modern greedy fill reducing ordering algorithms have very sophisticated implementations. They

are, therefore, difficult to analyze for asymptotic complexity. Some work has been done for

AMD [2], but until now, MD and MMD have escaped analysis.

In this section, we analyze the most expensive loops in MD, MMD and AMD. While the

degree of a vertex can be computed in these loops, there is also significant work being done to

update the quotient graph. The prevailing notion holds that the degree computation is the most

expensive part of the algorithm. The truth is that the degree computation is asymptotically of

the same order as the quotient graph update. When these two processes are totally divorced fi’om
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each other, it is the quotient graph update that requires more time ttign the degree computation

because it includes several lower order terms as well.

First, we cover some basic properties that are needed for the analysis. Then we derive the

asymptotic bounds which are somewhat complicated. To give these bounds more meaning, we

compute them for certain model problems in Section 3.a.7.

3.3.6.a Properties of a Quotient Graph

The quotient graph is a powerful and complicated data structure. It has many properties that

need explanation and quantification before we can attempt a thorough analysis of the MD, MMD,

and AMD algorithms.

Consider the state diagram in Figure 3.16 which shows the lifecycle of a quotient graph. In

this discussion, any transition along an "eliminate_supernode" edge is an elimination step, or

simply a step. Any series of transitions from a valid state to a semi-valid state and then ba& to

a valid state is a stage of elimination. A stage can involve multiple elimination steps. In the case

of single elimination, such as MD or AMD, then each stage has exactly one elimination step.

When the quotient graph is in a "valid" state, the internal adjacency lists of each supernode

and enode is known, and the priorities of each supernode can be established by traversing these

adjacency lists.

When any supernode is eliminated, the quotient graph enters into a "semi-valid" state. Upon

elimination, the reachable set of the eliminated supernode becomes the supernode adjacency list

of the newly formed enode. Although the eliminated supernode has become an enode and its

adjacency lists have been updated, the adjacency lists of all its neighbors have not been touched.

Indeed, one could not even accurately compute the degree of any of these supernodes until their

adjacency lists are updated, hence they become inelligible for elimination for the remainder of

this elimination stage. In multiple elimination algorithms, subsequent supernodes in the quotient

graph can be eliminated as long as they were not rendered inelligible by a neighbor’s elimination

earlier in this stage.
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eliminate_supernode( 
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<~ If #Supernodes == 0 ~.>-----
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FIGURE 3.16: State Diagram of a Quotient Graph.
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When the quotient graph is updated, it actually updates the adjacency lists of all the in-

elligible supernodes and performs additional optimizations such as supernode amalgamation,

outmatching, etc. All the remaining supernodes have their adjacency list completely defined and

become elligible for elimination. Therefore the quotient graph returns to a valid state.

When the quotient graph has no remaining supernodes after updating, then the elimination

order is completely defined and can be harvested from the otherwise empty graph class.

In this section, we use i for any node in the quotient graph (supernode or enode), k for the

supernode eliminated at the k th step, s to denote supernodes in general, e for enodes in general,

and r for supernodes in the reachable set of k. Thus, one can infer that in the elimination

ordering ~r; 7r(e) < k < 7r(r), 7r(s). To keep our illustrations simple and clear, we chose the 

ordering of A to be the elimination ordering (as in Figure 3.13). Although this is certainly never

the case in practice, by making ~r(i) = i for our examples, we can drop the ~r(.) notation entirely

for the rest of this document.

Careful distinctions must be made between adjacency in the quotient graph (adjg(i)), 

adjacency in the corresponding elimination graph (adja(i) or simply adj(i)). Adjacency 

quotient graph is the union of the supernode adjacency (sadj(i)), enode adjacency (eadj(i)).

Since supernodes and enodes are unique to the quotient graph, the ~ can be omitted. Whenever

we are talking about the adjacency at a particular timestep k, we will use the graph subscripted

that that kth step (Gk or g~).
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At the time that the quotient graph is transitioning to a valid state and k is the most recently

eliminated supernode, the following are invariant.

reach~c~(s)= adja~(s), (3.8)

adj&i) = sadie(,;) U eadj~(’i), (3.9)

ladj~(s)l <_ ladjgo(s)l, (3.10)

leactj6(e)l= 0, (3.11)

[sadj~(e)l< rsadj~(~)(e)], (3.12)

ladjg(s)l< IA,,sl, (3.13)

[sadjg(e)l< In,,~l. (3.14)

Equation 3.8 restates that the reachable set of a quotient graph is the same as the adjacency set

in the elimination graph. Equation 3.9 is the definition of adjacency on a quotient graph.

Equation 3.10 states that the size of the adjacency lists of any supernode s for all timesteps

until it is eliminated is a strictly non-increasing function. This is true because there is no quotient

graph transformation that involves adding edges to supernodes. Edges can change type from

supernode adjacency to an enode adjacency when the adjacent supernode is eliminated. Edges

are removed in any one of three cases: (1) because indistinguishable supernodes are amalgamated,

(2) because the edges become redundant when adjacent supernodes are adjacent to a common

enode, or (3) because the edges that used to point to some enodes are no longer valid because

the enodes were absorbed by a newly formed enode. This newly formed enode is also adjacent,

though it is likely to be listed (incorrectly) as an adjacent supernode.

We can make a similar assertion about the the size of the adjacency set of an enode. For the

case of enodes, however, we can be more precise. Recall that when an enode is formed, it absorbs

all of its adjacent enodes. Therefore, the enode adjacency of an enode is always zero as we show

in Equation 3.11. We assert in Equation a.12 that the size of the supernode adjacency list of an

enode is also bounded by its size when the supernode is created. After an enode is formed, there
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are no quotient graph transformations that add additional edges to an existing enode. Edges are

only removed from enodes when indistinguishable supernodes are detected and amalgamated.

Enodes themselves can of course be absorbed into larger enodes, but that only happens when a

new enode is created.;

Equation 3.13 states that the adjacency list of a supernode in the quotient graph is bounded

by the corresponding column in A. If we prohibit precompression, go(s) = A,,~ for all s. This

becomes a inequality when we allow precompression, and it holds for all timesteps until the

supernode is eliminated by virtue of Equation 3.10.

Equation 3.11 holds for all timesteps k after the enode e is formed until some timestep r when a

reachable node of e is eliminated and e ceases to exist. If we disable supernode amalgamation and

precompression it is easy to show that Isadj~c~ (e)l = IL.,el. Thus the inequality in Equation 3.11

holds when using amalgamation, precompression, and Equation 3.12.

Lines 13-15 in Algorithm 3.3 show the update phase for the quotient graph and the repriori-

tizing of all the vertices adjacent to recently eliminated vertices in the elimination graph. If the

algorithm is a single elimination scheme such as MD or AMD, then this set of vertices is exactly

the reachable set of the most recently formed enode in the quotient graph. If the algorithm is a

multiple elimination scheme, this set of updated vertices will be the union of all reachable sets

of all enodes formed in the last elimination stage.

The way that the quotient graph updates itself and reprioritizes supernodes differs between

approximate degree updates (which are necessarily single elimination algorithms) and exact de-

gree updates (which may be single or multiple elimination schemes). To bound the performance

of these algorithms, we show the parts of the quotient graph update subroutines that are the most

expensive asymptotically. They have also been confirmed to be most expensive experimentally.

3.3.6.b Minimum Degree

We start with simplest case, a single elimination exact minimum degree ordering (called Minimum

Degree). The update set in line 1 of Algorithm 3.4 is exactly the reachable set of the supernode
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Algorithm 3.4 The most expensive loop in the MD and MMD update process. At this level

the only distinction between MD (which is a single elimination scheme) and MMD (which uses
multiple elimination) is how many principal supernodes are eliminated between updates. This
fragment does not include additional features such as indistinguishable supernode detection,

graph compression, and outmatching.

1. for each supernode r in the update set {
2. timestamp +--- nextStamp0 ;
3. visited[ r ] +---- timestamp ;
4. degree[ r ] +--- 0 ;
5. for each enode e in eadj(r) 

6.

7.
8.

9.

10.

11.
12.
13.
14.
15.

16.

17.
18.
19.
20.
21.

//get value larger than any in visited
//prevent visiting self
//no self weight, external degree

//consider principal enodes, removing non-principal ones
white ( e ¢ parent( e ) ) //~,h, ile e is not principal

eadj(r) +--- eadj(r) \ e // remove e from eadj(r)
e +--- parent( e ) // advance to parent enode

}
eadj(r) +-- eadj(r) U e ; //write back principal enode

//I visit each adj snode once, and add to degree
if ( visited[ e ] < timestamp ) 

//if not yet visited ...
visited[ e ] +-- timestamp ; /I/ it is now
for each snode s in sadj(e) 

if ( visited[ s ] < timestamp ) 
visited[ s ] +---- timestamp ;
degree[ r ] ~-- degree[ r I + weight[ s ] ;

}
}

}

}
for each snode s in sadj(r) 

//visit each principal unvisited adj snode once
if ( ( visited[ s ] < timestamp ) and ( parent( s ) = s 

visited[ s ] +-- timestamp ;
degree[ 7"] +-- degree + weight[ s ] ;

} else { //if s is already visited or" not principal
sadj(r) +---- sadj(r) \ // remove it

}
//NOTE: if s is non-principal, its parent is already in sadj(r)
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that was eliminated since the last update. We start with a quotient gt:~tph that is in a state where

an enode has already been formed by eliminating a supernode and amalgamating any adjacent

enodes. All supernodes reachable to the old supernode, however, have yet to be updated. Tile

same holds true for any supernodes that were adjacent to one or more of the amalgamated

enodes. This process includes: (1) removing any old adjacent enodes that have been merged into

the newest one, (2) removing adjacent snodes that are already reachable though an enode, and

(3) removing the newest enode from the old snode list, and computing the external degree of the

node.

We proceed now with a line by line examination of the algorithm. The outermost loop (lines 1-

22) iterates over the set of all supernodes in the quotient graph that need to be updated. Since

all adjacency lists are unordered, a timestamping mechanism is used to prevent double visiting.

This involves using a value timestamp (line 2) that is larger than any value found in the array

visited (line 3). Since no index is used at the same time for enodes and supernodes, we can use

the visited array for both without fear of collisions.

Now looping over all the adjacent enodes (lines 5-15), we perform two tasks. First we remove

any non-principal enodes in the adjacency lists and replace them with the principal enode (lines 6-

9). To see why this is necessary, consider a three node quotient graph with two supernodes i, 

and one enode e. Furthermore assume there are two edges (i,e) and (e, j). Now we eliminate

supernode i, which we transform into an enode that absorbs the adjacency list of e. Now it is time

to update. The new enode e has an edge to supernode j, but j has an edge to a now non-existent

enode e. To correct this, j must replace this with an edge to the enode that absorbed e, namely

j.

Each time we produce a principal enode adjacent to a supernode in the update set, we insure

that we examine its list of adjacent supernodes only once (lines 10-12). The purpose of this 

twofold. First, we want to timestamp all supernodes reachable through an enode (line 14) 

strip off redundant edges later (line 21). Second, we want to compute the size of the reachable

set of supernode r (line 15) which is also the degree of r in the elimination graph. Note that 
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marked the updated supernode as visited in line 3 to prevent revisitfng it through an adjacent

enode.

The final inner loop (lines 16-21) iterates over the set of adjacent supernodes of each updated

supernode. If the adjacent supernode has not already been visited through an enode (lines 10-

11), if it is not really a newly formed enode (which would have been visited and flagged in line 11),

and if it is a principal supernode, then we mark it as visited and add its weight to the degree of

the updated supernode. Otherwise, the supernode found can be discarded.

Note that there is no need to follow parent pointers with compressed supernodes like there

is with amalgamated enodes. Recall that supernodes are only compressed if they are indistin-

guishable, meaning that, among other things, they have identical neighbors. Therefore if i is a

supernode that is being updated and it has in its adjacency list an edge to a supernode j that is

compressed into another supernode k, then we know that j and k must both have an edge to i

and that i nmst also have an edge to k. The edge to j can then simply be discarded.

Working from the innermost loops out, lines 12-15 are O(Isadj(e)l). The cost of the loop that

advances through parent pointers of enodes (lines 6-8) can be restricted to one by not forming

the elimination trees explicitly during the elimination, but afterwards. In this case a minimal

representation called the front tree [56] will keep this loop from repeating more than a constant

number of iterations. The encompassing loop over all principal enodes (lines 5-15) is therefore

(P(Ecee~dj(r) Isadj(e)l) ¯ The subsequent loop (lines 16-21) is (9(Isadj(r)D.

The time taken for the MD algorithm is therefore

,3.15,
rCsadj(k) eCeadj(r)

where np is the number of principal supernodes eliminated. Except for pathological cases in

which no supernodes are indistinguishable throughout the elimination, np << n.
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3.3.6.c Multiple Minimum Degree

Tile time taken for the MMD algorithm is related to MD. We can use the same algorithm and

analysis presented from Figure 3.4. The difference is that the update is perfornmd only after

a set of independent supernodes of low (or minimum) degree has been eliminated. Hence the

complexity is

(_9 E E Isadj(e)l (3.16)
\j=l rCUk~Kj sadj(k) eEeadj(r)

where nh is the height of the front tree (which is related to a supernodal elimination forest),

Kj is the set of newly eliminated nodes at the jth step, and r is the reachable set of the newly

eliminated snodes.

Comparing Equations 3.15 and 3.16, we can see why MMD should outperform MD. Even

though both are stuck with a triply nested loop (lines 12-15, Figure 3.4), MMD updates less

often. Unless the resulting elimination forest is a simple path, nh < np. The second sum in

Equation 3.16 is the union of all supernodes reachable from any supernode eliminated at that

stage.

3.3.6.d Approximate Minimum Degree

The Approximate Minimum Degree (AMD) ordering avoids the triply nested loop inherent 

exact degree computations. It does this by computing an upper bound on the size of the reachable

set. Assume the weight of an enode is defined to be the sum of the weights of its adjacent

supernodes. The size of the reachable set of any vertex could never be more than the sum of

the weights of its adjacent supernodes and enodes. Indeed, it could be quite less [38]. What

makes the bound so loose is the fact that the same supernode could be reachable through several

different enodes, yet should only be counted once. Amestoy, Davis, and Duff [2] tightened this

bound by making all supernodes reachable through the most recently formed enode counted only

once. All other supernodes that do not share an edge with the most recently formed enode may
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Algorithm 3.5 Tile most expensive loop in the AMD update process

1.

2.
3.
4.
5.

6.

7.

8.

9.
10.

11.

12.
13.
14.
15.

16.

//1 compute the setDiff’s
timestamp = nextStamp() ; //get value larger than any in visited
k = most recent eliminated node ;
for each snpernode r in sadj(k) 

~[ ( parent( I" ) ~ r ) //lfr is not principa! ...
sadj(k) +--- sadj(k) \ r // remove it

} else if ( visited[ r ] < timestamp ) {//else ifr has not been visited.
visited[ r ] +--- timestamp ; // it is nOw.
for each enode e in eadj(r) 

//consider principal enodes, removing non-principal ones
while ( e # parent ( e ) ) // while e is not principal

eadj(r) +-- eadj(r) \ e // remove e from eadj(r)
e ~ parent ( e ) // advance to parent enode

}
eadj(r) +--- eadj(r) U e ; //write back principal enode

/I/compute setdiff for enodes
if ( eCk ) 

if ( visited[ e ] < timestamp ) 
visited[ e ] +-- timestamp ;
setDiff[ e ] +--- weight[ e ] -- weight[ r ] ;

} else {
setDiff[ e ] +--- setDiff[ e ] -- weight[ r ] ;

}
}

}
}

//2 compute degree and hashvalues for indistinguishable node detection
17. for each supernode r in sadj(/¢) 
18. approx_degree[ r ] +--- weight[ k ] -- weight[ r ] ;

19. hashval +--- 0 ;
20. for each enode e in eadj(r) 

21. if ( e¢k ) 
22. if ( setDiff[ e ] = 0 ) 
23. weight[ e ] = 0 ;
24. eadj(r) <~ eadj(r) \ 
25. } else if ( setDiff[ e ] > 0 ) 
26. approx_degree[ r ] +--- approx_degree[ r ] + setDiff[ e ] ;

27. hashval +~ hashval + e ;

}

28.
29.
30.
31.

}
}
for each

if (

}
}

32.

supernode s in 8adj(r) 
visited[ S ] < timestamp ) 

approx_degree[ r ] +-- approx_degree[ r ] + weight[ 8 ] ;
hashval +--- hashval + s ;

sorter.insert( hashval, r ) 
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be double counted. The downside is that the quotient graph needs"to be updated after every

elimination, thereby preventing AMD from employing multiple elimination. However, since the

only nodes that need to be updated are the ones adjacent to the most recently formed enode,

the approximation does well in practice.

The AMD algorithm uses intermediate values that are essentially set differences. Instead

of summing the weights of all adjacent supernodes and enodes, AMD sums the weights of all

supernodes and the "set-diffs" of all enodes.

[~s<sadi(~) weight[ s if e = k,
setDiff[ l =j (3.17)e

[~sC{sadj(e)\sadj(k)} weight[s] if e ¢ h,

where k: is the most recently formed enode. This is st, ill an upper bound on the actual degree of

a supernode, but it is useful in practice.

The quotient graph update for the approximate degree algorithms is very different than for

exact degree. We present the most expensive parts of the update procedure in Algorithm 3.5.

As we did with MD and MMD, we will go through a line by line explanation of this algorithm,

then compute its asymptotic complexity.

We start by generating a timestamp for this update, and noting the most recently formed

enode (lines 1 2). The first main loop (lines 3-16) computes the setDiff parameter for all enodes

adjacent to a node that needs updating. It also removes non-principal supernodes (lines 4-5)

and enodes (lines 8 11). The first time an enode that is not the most recently formed one 

encountered (lines 12-13), it is timestamped and its setDiff is initialized to its weight minus the

weight of the snode that is adjacent to both it and the most recently formed enode (line 15).

Every time we revisit that enode through another principal supernode, we subtract the weight

of that supernode from its setDiff (line 16).
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Now at line 17 of Algorithm 3.5, the setDiff values have been co/hputed, and we are set to

compute the approximate degrees of all the supernodes adjacent to the newest enode, k (lines 17

34). In this loop, we also take the liberty of computing a hash value that will be used later for

detecting indistinguishable supernodes. The degree is initialized to the weight of the newest enode

minus the weight of the supernode to be updated (line 18). Tile supernode is necessarily adjacent

to the enode otherwise it would not need updating. Furthermore, we are actually computing the

ezternal degree, which does not include the weight of the vertex itself. The hash value is simply

the sum of all adjacent supernodes and enodes, so it is initialized to zero (line 9). As with exact

degree updates, we are testing for indistinguishability in the quotient graph, which is not as

strong as indistinguishability in the elimination graph.

The first of the two inner loops (lines 20-28) iterates over the enodes adjacent to the supernode

we’re updating. If the enode is an edge bad( to the most recently formed, we have already added

its contribution to the degree, and can safely skip it (lines 21-22). If the setDiff for this enode

is non-negative, then we add its contribution to the degree and the hash value (lines 23-25).

If, however, the setDiff is zero, then this enode has no adjacent supernodes that are not also

adjacent through the newest enode. In this case the enode itself can be removed.

This feature, which is unique to the AMD implementations, may be helpful in limited cases.

For example, look back at Figure 3.13 on page 61. Looking at step 3, we see that vertices 4,

5 and 6 are indistinguishable in G~, but the corresponding supernodes in 93 are not. This is

because enode 2 is adjacent to supernodes 5 and 6. With the AMD algorithm as presented in

Algorithm 3.5, the quotient graph would remove enode 2 and supernodes 4, 5, and 6 would be

detected as indistinguishable.

Continuing with our discussion of the quotient graph t/pdate for approximate degree algo-

rithms in Algorithm 3.5, we iterate over the adjacent supernodes and add their contributions to

the degree and hash value (lines 29-32). Then the supernode-hash value pair is inserted into 

sorting mechanism for later use (line 33) and the approximate degree is stored as well (line 34).
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As to the complexity of the algorithm, we will examine only the s65ond loop of Algorithm 3.5

(lines 17-34). The first inner loop (lines 20-28) is obviously O(leadj(r)l), and tile 

O(Isadj(r)l ). Using Equation 3.9, we can show that one iteration of the outer loop runs in

O(bdj~. (r)l) time. The time taken for the AMD algorithm is therefore

)O ~ bdj~(r)l (3.18)
,-~sadj(k)

3.3.7 Model Problems

The most complicated aspects about combinatorial ordering algorithms such as the minimum

priority family and Sloan [50] is that the asymptotic complexity depends on the quality of the

result. These minimum priority algorithms are very sensitive to tie breaking, and the model

problems start will all nodes having the same degree. Therefore, we must assume a "perfect"

tie-breaking strategy that MD, MMD, and AMD all follow.

3.3.7.a Ring

Assume the graph of a matrix is a simple ring of n = 2t vertices. Then at any time, the ]adj6(i)l

of any supernode or enode in the quotient graph is at most two. Therefore, we can bound the

supernode adjacency and enode adjacency by two. We assume the elimination order where we

circle the ring and eliminate every second supernode encountered. This ordering is the best case

for multiple elimination. We also note that the ring is a pathological case where no supernodes

are indistinguishable at any time in the ordering.

MD(ring)

= o (s 0 
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MMD(ring)

\j=l rEU~eKj sadj(k)
eCeadj(r)

rEU~eKj sadj(k)

AMD(ring)
k=l rCsadj(k)

k=l rEsadj(k)

Note that the complexity is linear in all cases. This is because the supernode and enode

adjacencies are bounded by constants. MD is the most expensive, as expected, and MMD is

faster because it only updates a supernode after both its left and right neighbors have been

eliminated. AMD, on the other hand, is also faster than MD in this case because

= leadj(r) u sadj(r)l 

< ~ Isadj(e)l =4.
eEeadj(r)

3.3.7.b Torus

Assume a graph of a standard five-point stencil on a torus with n = 22t vertices. Using an optimal

tie-breaking strategy, the adjacency set of a supernode is bounded by four, but the same cannot

be said for the supernode adjacency of an enode. Luckily, when using supernode amalgamation,

we can bound the principal supernode adjacency of an enode by eight in this case.

To illustrate why the supernode adjacency of an enode in a torus is bounded by eight when

using an optimal tie-breaking strategy, we show a series of modified views of quotient graphs in
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Figure 3.17. In this figure, supernodes are represented as filled circles’, enodes as empty squares,

and edges are not drawn. Instead, the edges are implied by a supernode being "near to" an enode.

Lines in this modified view denote the extent of an enode’s reach. Therefore in Figure 3.17 we

draw an enode in space, bounded by a lines. All supernodes that are on the boundary line, are

adjacent to that enode in the quotient graph.

Figure 3.17.1 represents the situation after the first mass of elimination of MMD, in which.

half of the supernodes have been eliminated. At this stage, each enode has exactly four adjacent

supernodes. Each supernode has an ezternal degree (sum of the weights of the reachable set,

minus self weight) of eight. Remember that for 2-D illustration of a torus, the boundaries wrap

around. After the second mass elimination, as shown in Figure 3.17.2, another full fourth of

the remaining supernodes are eliminated. Now each enode has eight adjacent supernodes. The

external degree of the supernodes now depends on whether they are adjacent to two enodes, or

four. Each enode is similar to a finite-element panel with the supernode either being on the

corner or side of the panel. The external degree for supernodes on the side of the panel (adjacent

to two enodes) in Figure 3.17.2 is 11, the external degree for corner supernodes is higher at 15.

Figure 3.1Y.3a shows the graph after a maximal independent set of side supernodes has been

eliminated. It would appear that the size of the sadj of the enodes has increased beyond eight.

Consider the enode at coordinates (5,5) in Figure 3.17.3a. It has three supernodes located

at coordinates (5,4), (6,5), and (7,6) that it shares exclusively with the enode at (7,3). 

point, these three supernodes are indistinguishable from each other (Figure 3.17.3b) and can 

compressed into a single representative supernode (Figure 3.17.3c). After compression, we see

that each enode in Figure 3.17.3c is adjacent to no more than eight supernodes. Now we compute

the external degree of all the supernodes. The corner supernodes have external degree 31 (14

uncompressed supernodes, plus 6 compressed supernodes of weight 3, minus self weight). The

uncompressed edge supernodes have external degree of 19 ( 8 uncompressed supernodes, plus four

compressed supernodes of weight 3, minus self weight). The compressed supernodes have the

minimum external degree of 13 ( 10 uncompressed supernodes, plus two compressed supernodes
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of weight 3, minus self weight of 3) and so a maximal independent se’t of them is chosen for the

next mass elimination.

The process repeats in Figures 3.17.4a-3.17.5e and will continue to do so until there are only

two enodes left (Figure 3.17.6). At this point, every supernode remaining is indistinguishable

from every other, so they are all compressed into one supernode and eliminated in the very next

step.

A similar analytical tactic was used by Berman and Schnitger [10] to prove bounds on the

size of the factor when using a minimum degree algorithm. Whereas we chose an optimal tie-

breaking strategy for computing bounds for execution time of the algorithm, they chose one that

grew the cliques in the factor to be very large. Because of the quotient graph and supernode

amalgamation, the asymptotic complexity of the ordering algorithms is affected more by the

number of adjacent cliques than tlle size of these cliques.

Now that we have verified that for a quotient graph of a 2-D torus with an optimal tie-

breaking strategy badj(e)l _< and le adj(s)l G 4,we areready to c ompute the bounds for MD,

MMD and AMD.

MD(torus)

\k=l rCsadj(k) eCeadj(r)

< ~ 4x8
k=l rCsadj(k)

< (~ x 8 x 4 x 8) = 256n = 0(,0.
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FIGURE 3.17: Modified views of the quotient graph while performing a fill-reducing ordering on
a 16 x 16 torus. (1) After the first mass elimination, (2) after the second mass elimination, 
after the third, (3b) highlighting indistinguishable nodes, (3c) after indistinguishable nodes 
compressed into a supernode.
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FIGURE 3.17 (Continued): Similarly for (4a), (4b), (4c), (Sa), (Sb) and (5c). At 
only two enodes remaining, all supernodes are adjacent to both, SO they are all compressed to a
single supernode.
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MMD(torus)

<

<

<

AMD(torus)

Now consider the elimination of the first n/2 supernodes in the quotient graph of a torus.

Then we know

\k=l rcsadj(k) e~eadj(r)

(a.19)
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Since we also know that for the first n/2 supernodes the size of the’supernode adjacency and

enode adjacency is exactly 4, we can simplify Equation 3.19 to

MD~ (torus) < - x4x4x4=32n.
- -- 2

(3.20)

For multiple minimum degree, since the first n/2 supernodes form an independent set, they

can all be eliminated before the first quotient graph update. Therefore the outer sum in Equa-

tion 3.16 has but a single term.

j=l rCU~eKjsadj(k)
eCeadj(r)

n
< lx-x4x4=8n.
- 2

(3.21)

(3.22)

Finally, the running time for the first n/2 supernodes for AMD is

AMD~ (torus)
\k=l rEsadj(k)

n
< - x4x4=8n. (3.24)
- 2

3.3.8 Simplification

For all our model problems, we see that the bounds are linear. This is mainly due to the fact

that the models were chosen specifically because we could bound the size of the supernode and

enode adjacencies by small constants. We suspect that this is true for whole classes of graphs

such as planar graphs, though there is no known proof at this time to support our conjecture

that quotient graphs preserves planarity.
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Before discussing these results, we want to simplify the notation in Equations 3.15, 3.16,

and 3.18 which are reproduced below.

ce ( ))MD = (9 ~ Isadj(r)l+ ~ Isadj(e)l ,
\k=l rcsadj(k) eCeadj(r)

rEUkeKj sadj(k) eEeadj(r)

\k=l rEsadj(k)

We consider first the AMD bound. The term inside the sums adjgk (r) term represents the cost

per reachable node updated. Using Equations 3.10 and 3.13, we know that ladjgk (r)l __< IA.,rl-

Furthermore we observe that (ignoring the effects of precompression and supernode amalgama-

nption) the double sum ~k=l }-~’-res~dj(k) simply sums all nonzero entries Lk,,-. Therefore, we 

reverse the order of the summation show that

This equation becomes a strict equality if precompression and supernode amalgamation are dis-

abled. This is also captured in the observation (again assuming no precompression or supernode

amalgamation) that each reachable supernode r is updated a number of times equal to the number

of nonzeros in L ..... A simplified bound for AMD can be written as

This is identical to the bound reported by Amestoy, Davis, and Duff [2].

Unfortunately, applying this same technique does not remove all of the summations fl’om

the bounds for MD and MMD. In fact, this technique makes little sense for MMD since several

vertices adjacent to r can be eliminated with r only being updated once. From the matrix point
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of view, each reachable supernode is updated at most the number of nonzeros in L,,,,, and most

likely much less so.

It is obvious that MMD is faster than MD and that AMD is faster than MD. The relationship

between MMD and AMD takes some explaining. When there are no independent sets of vertices

of minimal degree, MMD can perform as badly as MD. However, every time L,,K~ has two or

more entries on the same row, MMD performs only one update. Under optimal conditions MMD

approaches AMD. When examining the elimination of the first n/2 supernodes in the torus, we

were able to show that MMD is as fast as AMD. We will show experimentally later, that the first

few iterations MMD can actually go faster than AMD, most likely because AMD has a larger

hidden constant in the asymptotic analysis.

3.3.9 Contribution

The fill reduction problem is so ingrained in sparse matrix computations, that every person who

ever solved a sparse linear system of equations probably used an algorithm like MMD, or some

equivalent. The user base is easily in the tens of thousands. This problem has been actively

research for the past 20 years. The number of papers published on this subject is easily in the

hundreds.

We are the first to prove a detailed complexity analysis for MD, MMD, and AMD. We are

also the first to point out that, contrary to what is in literature, the quotient graph update is

more time consuming than computing the degrees of the supernodes.

In Section 4.a.a we show how this insight into the differing characteristics of MMD and AMD

lead us to implement a fill reduc!ng poly algorithm. In Section 5.2.3 we show some preliminary

results from this polymorphic algorithm.

3.4 Summary

It is one thing to implement an algorithm and demonstrate that it works well. It is quite another

to analyze it and know how" it works and why it works well. In our research, we prefer the latter.
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For the Sloan algorithm, we were able to reduce the asymptotic complexity from O(n5/3) for

3-D meshes with good separators to O(n log n). We non-dirnensionalized the parameter space and

identified a previously unreported behavior of the algorithm: the class-I/class-2 phenomenon.

We were also able to generalize the algorithm from a reordering algorithm to one that refined an

existing ordering.

Greedy fill reducing ordering algorithms have been thoroughly examined for over 20 years.

Yet, we were the first to analyze the complexity of these algorithms and definitively rank their

asymptotic behavior. We also correct the "common wisdom" that computing the degree is the

most time-consuming part of the algorithm: analytically as well as experimentally. Our research

also indicates that MMD may be asymptotically slower than AMD, the may be cases -- such as

the beginning of the elimination -- where MMD may be faster. This vein of research leads us to

develop polyalgorithms that switch the exact algorithm dynamically.
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We were initially attracted to object-oriented software from personal experience; our procedural

codes failed to scale well with increasing layers of complexity. All of our work in the wavefront

reduction problem was originally done in ANSI C [50]. Subsequently, we retrained ourselves in

object-oriented programming, C++, and Java, then abandoned all the previous code and started

from scratch.

Our firm foundation in state-of-art algorithms put us on track to build first class software,

but that result is not guaranteed. The transformation from algorithm to software is neither

automated nor easy, especially considering the high goals we set for ourselves back in Section 2.2.

We start by listing what resources were used in developing this software in Section 4.1 The

basic inheritance hierarchy is explained in Section 4.2. Section 4.3 highlights some of the more

attractive (and complex) features of the software. We learned some hard, but practical, lessons

in building this software. Some of these are discussed in Section 4.4.

4.1 Resources Used

Our primary computing platform was Sun workstations running Solaris 2.6. Recently we have

had increasing access to WindowsNT and Linux computers. Because we skirted on the cutting

edge with the Standard Template Library (STL), most of the early code was developed using

the GNU C++ compiler and the Silicon Graphics implementation of STL1. Later, we moved to

the EGCS compiler2 which eventually included STL. STL is now a part of the standard C++

standard library [75].

Managing the codebase is done with a collection of shell scripts, perl scripts, an extensive

makefile setup inspired by PETSe, and RCS. Jam/MR3 was investigated as an alternative to

lhttp ://www. sgi. com/Tech/STL.
2EGCS was originally an experimental offshoot fi’om the GNU compiler. The EGCS compiler has now su-

perseded the GNU compiler and is officially GNU C+]- version 2.95. See http://egcs.cygnus.com for more
information.

3http ://www. perforce, com/j am/j am. html
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makefiles, but was then rejected because it lacked stability at the {{me. Debugging was done

with Purify4 and an excellent free graphical fl’ont end to GDB called DDD5.

Unit and regression testing was done with a lot of print statements and the UNIX diff com-

mand. It was semi-automated by shell scripts and makefiles. Documentation was generated using

doc++6, a free package that creates I4TEX or HTML documentation fl’om commands imbedded

in header comments.

8pi14g[e was designed and implemented without any object modeling tools or an integrated

development environment. With the exception of the underlying operating system the only non-

free software used was Purify. While there are several free or "open source" tools available, they

are not all high quality pieces of software. A carpenter can build a house with just a hammer

and a saw, butit goes much faster with power tools. The same applies to software development

and the piecemeal way in which a collection of free development tools was assembled.

4.2 Design

The very first partition in our problem space was to make a distinction between data structures

and algorithms. Data structures are a structured collection of information that can be valid,

invalid, stored on disk, queried or modified. Algorithms were computational engines that were

hooked up to inputs, configured to perform a service, run, queried for results, and possibly reset

for another run. An algorithm does not contain any data of its own, and though it certainly

has state while the software is running, it has no need preserve its state after its execution is

complete.

The glue that allows us to attach data structures to algorithms are iterator classes. The

interaction between data structures, algorithms, and iterators in our code is very similar to the

way it is done in the Standard Template Library (STL) [61, 74].

4http ://www. rational, com/product s/purify_unix

5http ://www. cs-tu, bs. de/soft ech/ddd
6http ://www. zib. de~Visual~software~doe++
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We will discuss data structure, algorithm, and iterator classes shortly, but first we need to

discuss the abstract base class of all data structure and algorithm classes: the SpindleBaseClass.

4.2.1 Base Class and Meta Data

At the highest level of the inheritance hierarchy is an abstract base class called SpindleBaseClass.

Being the parent class of both the Algorithm and DataStructure classes, this class has no real

equivalent in the physical world. Its use is limited to providing services for purely software re-

lated reasons: instance counting, unique identification number service, access to class meta data7,

providing a safe runtime cast down the inheritance hierarchys, instantiation by name, and other

functionality to be used later to support object persistence. Some of these features have been

outdated by recent additions to the C++ standard, but since compiler acceptance is slow and

piecemeal we have not been eager to eject these features entirely from the code.

We begin with the interface to the ClassMetaData class in Figure 4.1. Exactly one instance

of this class exists for each child of SpindleBaseClass. In turn, SpindleBaseClass has a virtual

function that returns a pointer to its ClassMetaData (see Figure 4.2). Thereibre, for any child 

SpindleBaseClass -- without knowing its exact type -- we can access a string representation

of its exact type, the size of the concrete type, the number of instances of that type created and

destroyed, access to its parent meta data, and access to the default constructor for that type.

The SpindleBaseClass provides a minimal interface that generates unique numbers for each

instance, standardizes error information9, provides meta data, dumps state information (to be

used only as last resort), provides safe dynamic casting, and allows empty instances to be created

on the fly.

The last method in Figure 4.2 is not so interesting by itself. But, when it is accessed

through the ClassMetaData: :pfn_createInstance and a registry class indexes all instances

7This was prior to standard C++ defining Run Time Type Infomation (RTTI).
SThis was prior to standard C++ defining dynamic_cast<T>.
9This is an experimental feature.
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fclass ClassMetaData h

{
public:

const char * className ;

const size_t classSize ;

int nCreated ;
int nDestroyed ;

ClassMetaData * parentMetaData ;

SpindleBaseClass * (*pfn_CreateInstance() 

bool isDerivedFrom( const ClassMetaData * p ) const 

FIGURE 4.1: Interface to the ClassMetaData class.

fclass SpindleBaseClass

{
protected:

const int idNumber ;

SpindleError * error;

public:

int queryIDNumber() const;

const SpindleError * queryError() const;

virtual const ClassMetaData * getMetaData() const 

virtual void dump( FILE * fp ) const 

x~.};

static SpindleBaseClass * dynamicCast( SpindleBaseClass * object 

static const SpindleBaseClass *

dynamicCast( const SpindleBaseClass * object ) 

static SpindleBaseClass * createInstance();

J

FIGURE 4.2: Interface to the SpindleBaseClass class.
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of ClassMetaData by string name, we can effectively instantiate by }iame at run time. This in-

frastructure was designed with the intent of moving to persistent objects in parallel computing.

Unfortunately, we have not had the opportunity to actively exploit this capability in a parallel

setting.

4.2.2 Data Structures and Object Persistence

The data structures implemented in Spi~le are limited to bucket sorters, forests (collections of

trees)~ graphs~ heaps, maps~ and matrices. Some are not particularly complex, less than 500 lines

of code. Others are exceedingly complex; the I~uotientGraph class is well over 2500 lines of code.

All of them inherit (directly or indirectly) from the DataStructure class.

In this section, we will explain the features of the DataStructure class, list all the classes that

inherit from it, show the sourcecode for a small driver that exercises the functionality inherited

from SpindleBaseClass, and a program that demonstrates SD~l~)le’s persistence mechanism.

4.2.2.a The DataStructure Class

We show the interface to the DataStructure class in Figure 4.3. This class provides two major

services to all its descendants: it completes the services needed to implement object persistence,

and it defines a four-state scheme and transitions between those states that all data structures

obey. Table 4.1 shows the transition table between states.

sDil4~)le’s data structures are built on the premise of split-phase construction. It does not

assume that a data structure (or any class for that matter) is ready for use once the constructor

is completed. Instead, it allows the data structure to be incrementally defined. Users can set the

size of a Graph, then provide the adjacency lists, then add the vertex weights, etc.

The second phase of this construction is a call to validate(). Exactly what constitutes 

valid state depends on the data structure itself. The PermutationMap class for instance, need

only verify that all the integers fl’om 0 to n - 1 are represented in a permutation vector of length
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public:

virtual void reset() 

virtual void validate() 

bool isValid() const { return currentState == VALID ; 

static SpindleBaseClass * createlnstance() const 

virtual void load0bjeet( SpindleArchive& ar ) 

virtual void store0bject( SpindleArchive& ar ) const 

j

FIGURE 4.3: Interface to the DataStructure class.

n. Our Graph needs to check that the adjacency list of each vertex is sorted and that there are

no duplicated edges.

Once a data structure is in a known valid state, that state is intended to be maintained

throughout the rest of the execution. Spill~[e provides a large nmnber of const member functions

that access the data structure without changing its state. Many non-const functions will preserve

the known valid state of the data structure as long as no error was encountered.

4.2.2.b Descendants of DataStructure

Here we list, briefly classes that either descend from DataStructure or are otherwise strongly

related in some way. The list of classes is grouped according to a functionality.

¯ Maps. Generally mapping from the set of integers [0...n] to another set of integers

[0...m]. All maps provide two representations, one for the forward mapping and one for

the reverse mapping.

- PermutationMap. Encapsulates a one-to-one and onto mapping. Provides old2new

and/or new2old.

- CompressionMap. Encapsulates an onto, but not one-to-one mapping. Provides for-

ward and reverse mappings f ine2coarse and coarse2f inc.
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Method
Invoked

default constructor~

constructor with argumentsb

reset()

setX(X& x)c

validate()

other non-const methods

other const methodsd

Initial
State

N/A

N/A

EMPTY

Final
State
EMPTY

VALID

INVALID

EMPTY

Comment

if method succeeds
if method fails

UNKNOWN EMPTY

VALID EMPTY

INVALID EMPTY

EMPTY
UNKNOWN if method succeeds

INVALID if method fails

UNKNOWN
UNKNOWNif method succeeds

INVALID if method fails

VALID
UNKNOWNif method succeeds
INVALID if method fails

INVALID INVALID Error. Must reset() from INVALID

EMPTY EMPTY Error. Nothing to validate.

UNKNOWN
VALID if method succeeds
INVALID if method fails

VALID VALID Error. Already known VALID

INVALID INVALID Error. Mustreset 0 ~om INVALID
EMPTY UNKNOWN

UNKNOWN UNKNOWN

VALID UNKNOWN

INVALID INVALID Error. Must reset() ~om INVALID

EMPTY EMPTY

UNKNOWN UNKNOWN

VALID VALID

INVALID INVALID Error. Must reset() from INVALID

alnvokes reset().
bTypically provided for convenience. Invokes reset(), set ... 0 for each argument, and then validate().
CWhere "X" is the type of the arguement begin supplied.
aRemember, const member functions should not change the state of the object.

TABLE 4.h Transition table for the DataStruct class



- ScatterMap Encapsulates a one-to-one, but not onto mapping.

and/or glob21oc (local to global and global to local).

¯ Forests -- A collection of 1 or more trees.
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Provides loc2glob

- GenericForest. Provides a generic collection of trees. Can be created from simple

array of parent pointers. Allows grafting and pruning of trees. Provides a generic

iterator as well as preorder and postorder iterators that are full STL input_iterators.

- EliminationForest. Inherits from GenericForest and implements a data structure

commonly used in direct methods. It can be created from a Graph or a (Graph,

PermutationMap) pair.

¯ Graph classes

- GraphBase. More like a parent struct than a parent class, this defines a generic

layout for adjacency lists in all graphs. Base classes like this are used to break cyclic

dependencies between different classes.

- Graph. Simple adjacency graph. May or may not have vertex weights and edge

weights. Provides const random access iterators over the adjacency list of each vertex.

Inherits from DataStructure and GraphBase.

- QuotientGraph. Custom data structure for generating fill reducing orderings.

¯ Matrix classes

- MatrixBase. More like a parent struct than a parent class, this defines a generic

layout for sparse matrices. Base classes like this are used to break cyclic dependencies

between different classes.

- Matrix. General sparse matrix. Has very little functionality since Spindle is essentially

a library of graph algorithms. Inherits from DataStructure and MatrixBase.

¯ Mist



- BucketSorter. Sorts rrt items by n buckets, where m >[~.

relnoval of any item in any bucket by name in (9(1) time.

103

Augmented to support

- BinaryHeap. Augmented to locate any item in the heap by name in (9(1) time.

¯ Utils -- These classes are a actually just a collection of static methods. They allow us to

group related functions, and keep fl’om weighing down data structure classes unnecessarily.

Utils do not inherit from DataStructure because they have no state of their own and

cannot even be instantiated.

- MapUtils. A collection of static member functions to do map manipulations such

as: creating an uncompressed permutation from a PermutationMap on a compressed

Graph.

- MatrixUtils. A collection of Matrix manipulation utilities such as: isSymmetric,

isTriangular, makeDiagonalsExplicit, raakeTranspose, etc.

It is interesting to note that even something as conceptually simple as a sparse matrix is imple-

mented as a collection of classes; in this case, six (SpindleBaseClass, MetaData, DataStructure,

MatrixBase, Matrix, and MatrixUtils) not including iterators. This was not how the software

was designed originally. It grew into this structure for very specific reasons. The reasoning be-

hind the separation between Matrix and MatrixBase is discussed in Section 4.3.1. The reason

for the separation between Matrix and MatrixUtils was that the latter is rarely used. We put

it in a separate class to cut down on complexity and feature bloat,.

Utility classes like this are especially useful when the operation bridges two or more data

structures that otherwise should be independent of each other. For instance, the MapUt ils class

above can take a PermutationMap of a compressed graph and its associated CompressionMap to

compute a permutation on the larger uncompressed graph. Logically, we could have made this

functionality a method of either map class, but then that class would be dependent on the other.

Instead we created a separate utilities class to handle map transformations.
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4.2.2.c Example: Using a PermutationMap

In Figure 4.4 we show a program that exercises some of the functionality that the Permut ationMap

class inherits from SpindleBaseClass. This simple program does not perform any particularly

useful function other than to provide a starting point for other programs.

One item we have not described yet is the SpindleSystem class (line 2). This is a com-

plicated class that performs useful functions for the computer scientist. It directs where trace,

warning, and error messages are directed. It also manages a registry of all objects derived from

SpindleBaseClass and their meta data. Spillble is designed to allow only one instance of the

registry to be created and it is guaranteed to be initialized in any compilation unit in which

SpindleSystem is included. The mechanism for this is similar to the way that cin and cout are

instances of istream and ostream, and are instantiated wherever iostream, h is included in the

source code [58, 59]. In line 10, we direct the registry to print out all ClassMetaData classes to

standard out just before its destruction.

Moving on with our explanation of Figure 4.4, we create a PermutationMap in lines 11-17.

We get the meta data from the registry in line 18, even though we could just as easily get it

directly from the class instance. In line 22, we create a second PermutationMap instance, though

it is never validated.

At the end of the code, when the SpindleSystem is being cleaned up, it destroys the registry

which, in turn, prints out the ClassMetaData for the SpindleBaseClass, DataStructure, and

PermutationMap classes, their respective sizes, the number of instances created and destroyed,

and the name of their parent classes.

4.2.2.d Example: PermutationMap as a Persistent Object

Far more interesting than showing how to access the meta data of an object is to demonstrate

its persistence. In Figures 4.5 and 4.6, we have two programs. The first program creates a

permutation, displays it to the screen, and then packs it into a SpindleArchive, which in this

case saves it to a file. The second program opens the file and attaches an Spindle/~rchive class
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i. #include <iostream>

2. #include splndle/SpindleSyst em. h"

3. #include "spindle/Permut at ionMap, h"

4. using namespace std;

5. #ifdef SPINDLE USENAMESPACES

6. using namespace SPINDLE_NAMESPACE;

7. #endif

8. #define REGISTRY SpindleSystem::registry()

9. main() 
i0. REGISTRY.setDumpOnDestroy( stdout );

ii.
12.
13.
14.
15.
16.
17.

const int perm_array[] = {3, 4, 2, O, I};

PermutationMap perm( 5 );

perm.getOld2New().import( perm_array, 5 

perm.validate();

if ( ! perm.isValid() 

cerr << "Permutation not valid!" << endl;

exit( -I );

}

18. const ClassMetaData* metaData = REGISTRY.findClass("PermutationMap") 

19.

20.

21.

cout << "Size of PermutationMap class = "

<< sizeof(PermutationMap) << endl;

cout << "According to the registry it is = "

<< metaData->classSize << endl;

cout << "This perm object is serial # = "

<< perm.queryIDNumber() << endl;

22.
23.

24.

PermutationMap perm2( 8 );

cout << "perm2 is " << ( (perm2.isValid() ) ? ....... not " )

<< "valid." << endl;

cout << "The second PermutationMap object has serial #"

<< perm2.querylDNumber() << endl;

FIGURE 4.4: Example of PermutationMap
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to it. Then we extract some class from the archive through a pointer t’o SpindleBaseClass. The

second program safely casts the pointer back to its concrete type, prints out the internal state of

the permutation, and then prints out the contents of the class registry. The outputs of the two

programs should be identical.

In principle, the archive could be attached to any type of data stream: a pipe to another

process, a TCP/IP socket, an MPI communicator, etc. This framework allows us to construct in-

stances without knowing their exact type a priori. It also allows easy migration of data structures

in and out of processes.

We intended to use this extensively as we grew into parallel applications in the future. Un-

fortunately, we have not had enough opportunity to explore this fully at this time. Furthermore,

aspects of this framework have been usurped by new features in the C++ standard as well as

component technologies such as EJB, DCOM, and CORBA. Whether or not this functionality

should be maintained through later revisions is unclear at this time.

4.2.3 Algorithms as Engines

Typically new object-oriented programmers convert their data structures into classes and bundle

all of the associated functions into class methods. In principle this is a good start, but it is

not a blanket solution for all cases. We have stumbled across many a debate as to whether the

ordering algorithm belongs as a method of the Matrix class or the PermutationMap class. In

fact, it belongs in neither.

There are many ordering algorithms, many of them very complex. It is one thing to group

simple transformations, such as matrix transpose, into a utilities class; quite another for a com-

plicated algorithm like Sloan or minimum degree.

These algorithms have states of their own. They can be executed several times with varying

parameters over the same data. There can be all kinds of special cases and complexity that can

be hidden fl’om the user inside an inteUigent class. There can also be methods to open up all

kinds of details and nuances that only advanced users might be interested in.
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I. #include <iostream>

2. #include "spindle/SpindleSystem.h"

3. #include "spindle/PermutationMap.h"

4. #include "spindle/SpindleArchive.h"

5. #include "spindle/SpindleFile.h"

6. using namespace std ;

7. #ifdef SPINDLE_USE_NAMESPACES

8. using namespace SPINDLE_NAMESPACE;
7. #endif

8. const int perm_array[] : { 3, 4, 2, O, I };

9. main() {

12.
13.
14.
15.
16.
17.

18.

19.
20.

21.

22.

// create a new permutation

PermutationMap * perm = new PermutationMap(5);

perm->getNew2Old().import( perm_array, 5 
perm->validate();

if ( ! perm->isValid() 

cerr << "Error validating original perm." << endl;

exit( -I );

}

perm->dump( stdout ); // display its contents

SpindleFile outputFile( "temp.out", "w"); // create a file

SpindleArchive archive( ~outputFile, // create an archive

SpindleArchive::store I SpindleArchive::noByteSwap );

archive << perm ; // set the object into the archive.

delete perm ;

}
// delete the original object

FIGURE 4.5: Object persistence of PermutationMap, part i. This piece of software produces &n

instance of & PermutationMap class, and puts it in an archive.
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I. #include <iostream>

2. #include "spindle/SpindleSystem.h"

3. #include "spindle/PermutationMap.h"

4. #include "spindle/SpindleArchive.h"

5. #include "spindle/SpindleFile.h"

6. using namespace std ;

7. #ifdef SPINDLE_USENAMESPACES

8. using namespace SPINDLE_NAMESPACE;
7. #endif

8. const int perm_array[] = { 3, 4, 2, O, i };

9. main() 

i0. SpindleBaseClass * object = 0 ;

II. SpindleFile inputFile( "temp.out", "r");

12. SpindleArchive archive( ~inputFile, // create an archive from that file
Spindleirchive::load I SpindleArchive::noByteSwap );

13.

14.
15.
16.

17.
18.
19.
20.

21.
22.
23.
24.

25.

26.

archive >> object; // extract an object from the archive

// check if we retrieved the object

if ( object == 0 ) 
cerr << "Did not retrieve object." << endl ;

exit( -i );

}

// check if it can be safely cast as a PermutationMap

PermutationMap* perm = PermutationMap::dynamicCast( object );

if ( perm == 0 ) 

cerr << "Dynamic cast failed." << endl ;

exit( -i );

}

// check if the content of the PermutationNap is valid.

perm->validate();

if (!perm->isValid() 

cerr << "Validation of new perm failed." << endl ;

exit( -i );

}

perm->dump( stdout ) ; // print out contents,

// (should be same as first run)

delete perm;

FIGURE 4.6: Example showing object persistence of PermutationMap: part 2. This program
finds the archive file created by the previous program, extracts the objects contained therein,
identifies it, and uses it.
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fclass SpindleAlgorithm : public SpindleBaseClass

{
protected:

enum { INVALID, EMPTY, READY, DONE } currentState ;

public:

virtual void reset() 

virtual void execute() 

bool isValid() const { return currentState != INVALID 

bool isEmpty() const { return currentState == EMPTY ; 

bool isReady() const { return currentState == READY ; 

bool isDone() const { return currentState == DONE ; 

j

FIGURE 4.7: Interface to the SpindleAlgorithm class.

Complicated algorithms are classes in their own right. We will soon see that just as some

data structures are implemented by combining several classes, so to are our algorithm classes.

4.2.3.a The SpindleAlgorithm Class

The SpindleAlgorithm class is an ancestor of all heavy-duty algorithm classes in Spi~l~le. Like the

DataStructure class, the SpindleAlgorithm class defines a four-state scheme that all algorithms

adhere to, although their semantics are slightly different.

The four states defined by SpindleAlgorithm are: EMPTY, READY, DONE, and INVALID. Data

structures allow a split-phase setup and then work very hard to insure they remain in a valid state.

Algorithms also allow incremental specifications until they have suiIicient inputs to generate an

output. Even when they can generate an output, it does not necessarily mean that they should.

There might, after all, be additional specifications or details to be set and we do not want to

restrict the user to have to enter them in any particular order. When the user is ready, a call to

execute () will signal the SpindleAlgorithm to execute.

If the run is a success, then it is up to the user to ask for whatever output tile algorithm is

prepared to generate. After running a MMD ordering, one user may ask for a PermutationMap

object, another may have use for the EliminationForest, and yet another may be interested in

diagnostic statistics. As long as the algorithm is in its DONE state, all these outputs are available
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I Method ’Initial ’ Final
Invoked State State Comment
default constructor’~

IN/A
I EMPTY

I i
EMPTY

other constructorb N/A READY
INVALID

I I
EMPTY EMPTY

I READY I EMPTY

rese~k) ’DONE ’ EMPTY

setX(X& x) 
enableX0

’INVALID EMPTY

EMPTY

EMPTY READY

INVALID

if not enough to execute
if enough info to execute
if method fails

if still not enough to execute
if now has enough to execute
if method fails

READY if method succeeds
READY

INVALID if method fails

DONE

INVALID

EMPTY

READY
execute()

r DONE

I INVALID

EMPTY

L READY
other non-const methods ,

DONE

READY if method succeeds
INVALID if method fails

’INVALID

other const methodsd

Error. Must reset() from INVALID
EMPTY Error. No data to execute on.
VALID if algorithm succeeds
INVALID if algorithm fails
DONE Error. Already known VALID

’ INVALID Error. Must reset 0 from INVALID

EMPTY

READY

INVALID

if still not enough to execute
if now has enough to execute
if method fails

READY
READY if can execute again
DONE if cannot execute again
INVALID if method fails

r INVALID’INVALID Error. Must reset() ~omlNVALID

EMPTY EMPTY

~ READY
i READY

’DONE ’DONE

J INVALID I INVALID Error. Must reset() Dom INVALIDI

qnvokes reset().
bTypically provided for convenience. Invokes reset(), and set ... ()-for each argument.
~Where "X" is the type of the arguement begin supplied.
dRemember, const member functions should not change the state of the object.

TABLE 4.2: Transition table for the SpindleAlgorithm class
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upon request. Or a user may set a new parameter thereby restoring the algorithm to the READY

state. At this point, the algorithm can be executed on the modified input.

In short,, these algorithm classes become computational engines or services. The ability to

construct an empty instance, set parameters and inputs individually, execute, and examine the

results upon request, are very similar in flavor to event, driven graphical user interfaces and even

CGI driven web pages. In these web pages, the user typically requests an empty page, makes

selections, types entries, sets input, then presses a button typically labeled "Submit". All the

inputs are then packaged and sent to the server which parses them, performs some operation,

and then presents the user with some feedback as to whether the transaction was successful or

not, and whether the user would like to examine the results in any greater detail.

The concept of algorithms as engines that provide services is a point of view echoed by the

component based software community. We did not happen across component based technology

until very recently. Nevertheless, we feel that the similarities are not purely coincidental.

4.2.3.b Descendants of SpindleAlgorithm

As Sp]~l~[e is a library of ordering algorithms, it is not surprising to find that most of the largest

and most complicated classes are the ordering algorithm classes. There are also supporting

classes that perform tasks required by the ordering algorithms. We list, all the descendants of

SpindleAlgorithm below:

¯ Support. Though not really ordering algorithms themselves, these classes provide impor-

tant services to the ordering algorithms.

- BreadthFirstSearch. Given a graph and a starting point, this algorithm traverses

the graph by generating level structures. This implementation can abort the algorithm

if the width of level structure is beyond the user specified tolerance (implements short-

circuiting strategy for PseudoDiameter). This class allows specification of multiple
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root nodes should the user prefer a breadth-first-search fr6m a set of vertices. Alter-

natively, this implementation also can be restricted to consider only vertices in the

same subdomain of a partitioned graph.

- GraphCompressor. Given an adjacency graph, this class will compute the number

of vertices in the compressed graph. Then, if the user requests, it will generate a

compressed, vertex weighted Graph class and CompressionMap from the uncompressed

vertices to the compressed vertices. This class is used by the 0rderingAlgorithmclass.

- PseudoDiameter. This class implements the algorithm discussed in Section 3.1. Must

be run for each connected component of the graph. It, can be set to observe domain

restrictions on a partitioned graph. It also relies on a separate class derived from

ShinkingStrategy to restrict the number of candidates examined. We explain this

in detail in Section 4.3.2.

- SymbolicFactorization. This descendant of SpindleAlgorithmimplements the first

half of the factoring operation in Figure 2.2. Given a Graph or a Graph and either a

PermutationMap or an EliminationForest, this class computes the EliminationForest

(if not supplied) and then generates a PermutationMap that is a proper post order 

the EliminationForest. It then calculates the amount of storage required to store

the factor as well as the amount of work required to compute it.

¯ Ordering Algorithms.

- 0rderingAlgorithm. Derived from SpindleAlgorithm, this class is the parent of all

the other ordering classes. It provides a uniform interface for all ordering algorithms.

It also handles precompression of the input graph and mapping the permutation of the

compressed graph back to the uncompressed graph. Therefore, all derived classes need

only concentrate on the compressed graph. Users can control when graph compression

is actually used by setting a tolerance for the ratio of vertices in the compressed graph
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to vertices in the original graph. When this ratio is close[o one, there may be little

or no benefit to actually creating a second graph instance.

- RCMEngine. Derived from 0rderingAlgorithm, this class will automatically run the

RCM algorithm on each connected component of the input graph. It can also be set

to restrict the ordering within subdomains of a partitioned system.

- SloanEngine. Also derived from 0rderingAlgorithm, this class will automatically

compute a Sloan ordering on each connected component of the input graph. By

default, it will perform two orderings, one with "Class 1" and one with "Class 2"

weighting strategies (see Section 3.2.5.d), and automatically choose the best result for

each connected component. Alternatively, the user can specify what class of weights

should be used, whether they be normalized or not, individual weights, or even the

global function to employ other than the one provided, the distance from the endpoint.

Like RCM, it can also be set to restrict the ordering within subdomains of a partitioned

system. This algorithm class can also be set to refine an existing ordering whether it be

an explicit permutation or the implicit ordering of the input graph. It also allows the

user to explicitly set the start node, end node, or both in lieu of the PseudoDiameter

class. Furthermore, whole sets of start and/or end nodes can be specified. There is

also a mechanism to ensure that end vertices are guaranteed to be numbered last.

- MinPriorityEngine. This class inherits from 0rderingAlgorithm and implements

a collection of greedy, fill-reducing ordering algorithms. It allows single or multiple

elimination with exact updates, or single elimination with approximate updates. As

these algorithms tend to be sensitive to input orderings, this class allows the user to

randomize the graph before performing the ordering, or set a specific permutation. It

sets a tolerance for when heavily connected vertices are removed and numbered last,

even before the ordering begins. It can even recreate a bug in GENMMD where vertices

adjacent to an enode have their degree artificially inflated by one (not recommended).
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4.2.3.c Algorithms in Action

Figure 4.8 is a minimal driver for the different ordering algorithms in Spig~Ie. Lines 1-3 simply

lay out the arrays that will be used to create our Graph class (line 11).

The 0ptionDatabase class on line 5 is a convenient class to handle configuration details. It

defines an "option" as a flag and zero or more associated m’guments. The flag and arguments are

all stored as strings, but the 0ptionDatabase provides methods that safely extract ints, floats

and the like from the string representation. In line 6, we pass it the command line arguments, but

we skip argv [0] since its always the name of the program being executed and does not provide

any useful information to the class.

The OptionDatabase class also can be queried if options exist. We can see from line 6 of

Figure 4.8 that the query can be a string of logically or’ed possibilities. Lines 7-10 simply print

out useage information if its queried, or if no minimize option is specified.

In lines 11-13, we create a graph class to perform an ordering on and insure it is valid. In

lines 14-20 we create an instance of an ordering algorithm based on the user’s commandline

option and pass the newly created object to a pointer to the parent class 0rderingAlgorithm.

If the user did not provide a valid argument on the command line, lines 20-22 print an error

message and exit.

The rest of the code in Figure 4.8 is almost self explanatory. We give the ordering algorithm a

graph to operate on (line 24), run the algorithm (line 26), gain access to the resulting permutation

(line 28)and print its contents to the screen.

4.2.4 Iterators

Separating the data structures from algorithms is extremely beneficial in creating modular code.

Creating a usable interface whereby modules can interact efficiently is difficult. The best com-

promise we found was to use iterator classes. The algorithms assume that iterators have a certain

interface for traversing a set of data, and the data structures implement iterators specific to their

implementation.
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// includes go here

#include ...

//
i. const int nvtxs = 9 ;

2. const int adjhead[] = {0,2,5,7,11,14,16,19,21};

3. const int adjlist[] = {1,3,0,2,4,1,5,1,3,5,7,2,4,8,3,7,4,6,8,5,7};

4. int main( int argc, const char * argv[] ) 

5. OptionDatabase db;

6. db.loadCommandLineOptions( argc- 1 , argv + i );

7. if ( db.hasOption( "hlhelpl?" ) II (!db.hasQption("minimize") 

8. cout << "Usage :" << argv[ 0 ]

<< " -minimize [ fill I env I wf I bw ]" << endl ;

9. exit( 0 );

}

i0. Graph mesh3x3( 9, adjhead, adjlist );

ii. mesh3x3.validate();

12. assert(mesh3x3.isValid() 

13. OrderingAlgorithm * order;
14. if ( db.hasOption( "minimize", "fill" ) 

15. order = new MinPriorityEngine() 

16. } else if ( db.hasOption( "minimize", "envlwf" 

17. order = new SloanEngine() 

18. } else if ( db.hasOption( "minimize", "bw" ) 

19. order = new RCMEngine() 

20. } else {

21. cout << "Error: Invalid argument to minimize"
<< db.getOption( "minimize" ) << endl;

22. exit( -I );

23.

24.
25.

}
assert ( order->isEmpty() ;

order->setGraph( & mesh3x3 );

assert(order->isReady() 

){

26. order->execute();

27. assert(order->isDone() 

28. const PermutationMap * result = order->getPermutation();

29. assert(result->isValid() 
30. result->dump( stdout );

31. delete order;
32. return O;

}

FIGURE 4.8: Example: Algorithms in Action. This is a minimal use of the ordering algorithms.
They have a lot of options to trigger before invoking execute ().
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It is important to question if iterator classes are really necessary in our case. The algorithms

in SpinS[e operate on a graph or a matrix, they are not as general as algorithms provided in

STL [74] like sort() which operates on vectors, lists, and deques. On the other hand, we are

designing for flexibility. While SpinS[e in its original incarnation performs orderings on just Graph

classes, we wanted to allow for more classes later. Indeed we see indications of this happening in

Section 6. Although this itera%or paradigm was successful in many cases, we also discuss where

they were misapplied and dragged performance significantly in Section 4.4.1.

4.2.4.a Definition of an Iterator.

An iterator is closely associated with a particular container class, usually a "friend" class, that

enables traversing items in the container without revealing its underlying storage mechanism.

Assume, for example, that the list of all edges in a Graph are in the array adjList [] and

that a second array adjNead [] stores the beginning index into adjList [] for each vertex in the

graph. Then to check if vertex i is adjacent to vertex j, we could simply run through the arrays

as in the following piece of code:

//A C-like function that directly accesses Graph’s data
bool isAdjacent( const Graphgz g, int i, int j )const

{
for( int k = g.adjHead[i]; k < g.adjHead[i+1]; ++k ) 

if (g.adjList[k] == j ) 

return true;

}
}
return false;

}
J

This design has several flaws. The function assumes the layout of data in the Graph class and

accesses it directly. Consider now a different approach where the Graph class creates an iterator.

Conventionally, the iterator classes mimic the functionality of a pointer accessing an array. The

dereference operator, operator* (), is overloaded to access the current item in the container, and

the increment operator, operator++ ()). advances the iterator to the next item in the container.

Rewriting our function above, we define Graph: : adj_begin(int) to create an iterator pointing
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to the beginning of the adjacency list of a specified vertex and Graph: -adj_end (int) to return

an iterator pointing to the end of the list1°.

//A C+-I- globo! function using Graph::adj_iterator
bool isAdjacent( const Graph& g, int i, int j ) const

{
for( Graph::adj_iterator it = g.adj_begin(i);

it != g.adj_end(i); ++it ) 
if ( ~it == j ) 

return true ;

}
}
return false;

}
J

The benefit of this second approach is that the function isAdj acent () no longer assumes how

the data inside Graph is laid out, If it is indeed sequential as it was in the previous example, then

the iterator could be simply a typedef’ed int*. However, the adjacency lists could be stored in

a red-black tree for faster insertions and deletions. In this case, the example using iterators still

applies since it assumes a suitable iterator class is provided.

4.2.4.b Application of Iterators.

Iterators provide a kind of "compile-time" polymorphism. They allow a level of abstraction

between the data structure and the algorithm, but the concrete implementation is determined at

compile time. This allows the compiler to inline function calls (often through several levels) and

get very good performance11.

There were a few difficulties in applying this technique to our problems. The most complicated

aspect was that all STL containers are one-dimensional constructs. Most of our data structures

-- matrices and graphs -- are two dimensional. This was not a serious problem since we, as

programmers, tend to linearize things anyway. In the example of iterators before, for instance,

we simply used iterator to iterate over the set of vertices adjacent to a particular vertex.

1°Actually, it points to one past the end a standard C++ comeention.
11C++ cannot inline virtual functions.
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4.3 Features

The features provided in Spi~l~)le are a direct result of the design principles we enumerated in Sec-

tion 2.2. In this section, we give examples of particularly useful features that were implemented

for usability, flexibility, and extensibility in the code.

4.3.1 Multiple File Formats: A case for multiple inheritance

An important problem that we often run into is sharing problems with other researchers. When-

ever we agree to generate some solutions for a client (either academia or industry} we often find

that we must adapt our code to a new file format. There have been attempts to standardize

sparse matrix file formats, most notably the Harwell-Boeing Format [23], and the Matrix Market

format [12]. However, it is unreasonable to expect clients to restrict themselves to a small choice

of formats. Understanding the nature of this problem and applying object-oriented techniques

is a good exercise in preparation for the harder problems ahead.

The easiest.way to handle sparse matrix I/O is to have a matrix class with two member

functions: one to write a particular format and another to read that format. This is a simple

solution, but it has a scalability problem. First, as the number of formats increase, the number

of member functions grows and the matrix class becomes more and more cumbersome. Second,

if separate matrix classes are needed then all of the I/O functions must be replicated for each

class.

4.3.1.a The Chicken and Egg Problem

One could reasonably create a Matrix class and a MatrixFile class for each matrix file format.

Unfortunately the resulting problem is determining which creates which. One would expect to

create a matrix fl’om a file, but it also makes sense to create a file from the matrix.
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f
//Matrix.h
#include "MatrixFile. h"

class Matrix

{
public:

Matrix( MatrixFile& );

};

//MatrixFile.h
#include "Matrix.h"

class MatrixFile

{
public:

MatrixFile( Matrix&)

};
.t/

Such a design induces a cyclic dependency between the two objects, which is bad. Cyclic

dependencies can have a dramatic effect on the cost of maintaining code, especially if there are

concrete classes inheriting from the cyclic dependency [52, pg. 224]. This is exactly the case

here, since the intention is to abstract away the differences between different file formats.

A solution is to escalate the commonality between the two classes. This has the advantage

that the dependencies are made acyclic, the downside is that an additional class is introduced

for purely "computer science" reasons that has no physical counterpart. We will call this class

MatrixBase which is the direct ancestor of both the Matrix and MatrixFile classes.

r
//Matrix.h (second try)
#include "MatrixBase. h"

class Matrix
: public MatrixBase

{
public:

Matrix( MatrixBase~ );

};
J

f
//MatrixFile.h (second try)
#include " ’ .h"MatrlxBase

class MatrixFile
: public MatrixBase

{
public:

MatrixFile( MatrixBase& );

};

Now we can derive various matrix file formats from MatrixFile independent from the internal

computer representation of the Matrix. We will show later that the benefits compound when

considering roan’ix to graph and graph to matrix conversions.

4.3.1.b Navigating Layers of Abstraction

It is important to understand that abstractions involved around the construct we call a "matrix"

come from different levels and have different purposes. To define a class Matrix and possibly
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many subclasses, care must be taken to capture the abstraction correctly. It is hard to give

a formula for designing a set of classes to implement an abstract concept. However, when the

abstraction is captured just right, using it in the code is natural and intuitive. Good designs

often open new possibilities that had not been considered.

For the matrix object, we have identified at least two dimensions of abstraction that are

essentially independent, one from the mathematical point of view, one fi’om the computer science

point of view.

Along the first dimension, the mathematical one, a matrix can be sparse, dense, banded,

triangular, symmetric, rectangular, real or complex, rank deficient or have full rank, etc. From

a mathematical point of view, all of these words describe a property of the matrix.

From a computer science point of view, there are different ways that these 2-D constructs are

mapped out into computer memory which is iself one dimensional. Primarily, matrices must be

set in either row-major or column-major order, though diagonally arranged data has been used

in some cases. For sparse matrices, indices can start counting from zero or one. Layout is further

complicated by block structures, graph compression, etc.

The critical question is: in all the specifications of matrix listed above, which ones are spe-

cializations of a matrix and which ones are attributes? The answer to this question directs which

concepts are implemented by subclassing and which are implemented as fields inside the class.

The answer also depends on how the class(es) will be used. Rarely will a programmer find

a need to implement sepm’ate classes for full rank and rank deficient matrices, but it is also not

obvious that a programmer must implement sparse and dense matrices as separate classes either.

Matlab uses the same structure for sparse and dense matrices and allows conversion between

the two. On the other hand, PETSc has both sparse and dense matrices subclassed from their

abstract Nat base class.

A third dimension of complexity comes from matrix file formats, which can be either a text

or binary file, and more generally, a pipe, socket connection, or other forms of I/O streams. In
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particular, even if the matrix is symmetric, and the storage is explicit, it may still be implicit --

meaning only the lower/upper triangle is stored -- to conserve disk-space/banwidth/etc.

4.3.1.c Final Layout

Our major concern was to have a flexible extensible system for getting matrices in many different

tbrmats in and out of our programs at runtime. We discuss in this section how we finally organized

our solution. The inheritance hierarchy of the subsystem is shown in Fig. 4.9.

First we made non-abstract base classes GraphBase and MatrixBase which define a general

layout for the data. From these, we derive Graph and Matrix classes which provide the public

accessor/mutator functions, each provide constructors from both GraphBase and MatrixBase.

Furthermore, Graph and Matrix classes also inherit from the DataStructure class which gives

it generic data structure state, error reporting functionality, and all the other features described

in Section 4.2.2. This way, both can construct from each other without the cyclic dependencies.

The final important piece before fitting together the entire puzzle is a DataStream class. This

abstract base class has no ancestors and does all of its I/O using the C style FILE pointers. We

chose this C-style of I/O because, although it lacks the type-safety of C++ style iostream, it

does allow us to do I/O through files, pipes, and sockets. These features have unfortunately not

been included in the C++ standard.

If we try to open a file with a ".gz" suffix, the file object inherits from the DataStream

class the functionality to open a FILE pointer that is in fact a pipe to the output of gunzip12.

The DataStream class is therefore responsible for opening and closing the file, uncompressing

if necessary, opening or closing the pipe, or the socket, etc. but is an abstract class because it

doesn’t know what to do with the FILE once it’s initialized. This class also provides the error

handling services that are typical with file I/O.

To understand how all these partial classes come together to do I/O for a sparse matrix

format, consider adding a new format to the library, a Matrix-Market file. To be able to read this

12The ". gz" suffix indicates a file that is compressed with tile GNU zip utility (gzip) and can be uncompressed
by its complement, gunzip.
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format, we create a class MatrixMarketFile which inherits from MatrixBase and DataStream.

This new class needs to implement two constructors based on MatrixBase oi" GraphBase and

two virtual functions: read( FILE * ) and write( FILE * ) (in practice, it also implements

many more accessor/modifier methods specific to the Matrix-Market format). Now, we can read

a Matrix-Market file, and create instances of either Graph or ~Iatrix (or any other class that uses

a NatrixBase in its constructor). Furthermore, from any class that inherits from MatrixBase

or graphBase we can write the object in Matrix-Market format. A graph-based file format, for

instance Chaco [42] can be created using a siinilar inheritance hierarchy based on GraphBase.

4.3.2 Extensibile Pseudo-Diameter

As we saw in Section 3.1.3 even simple algorithms like the pseudo-diameter coinputation are

under constant improvement. Good software needs to be aware of this fact and allow for it to be

easily adapted -- lest it become obsolete.

To implement the many different shrinking strategies and allow for the subsequent develop-

ment of new ones, we created a separate homomorphic inheritance hierarchy just to implement

shrinking strategies. The abstract base class ShrinkingStrategy, defines two vectors of (ver-

tex, degree) pairs, a function that takes an array of vertices and a const Graph pointer and

packs the (vertex,degree) pairs into one of the vectors, and a pure virtual function that copies

a subset of (vertex, degree) pairs from the first vector to the second. Concrete classes derived

from ShrinkingStrategy, must define exactly how (vertex, degree) pairs from the first vector

are chosen for the second.

Spin~/e’s PseudoDiameter class has a pointer to the abstract base class ShrinkingStrategy

and has no knowledge which derived class is actually being used. In fact, we were able to

implement the more aggressive shrinking strategies of Reid and Scott [69] without modifying any

of the existing code.

It turns out that this design is an instance of the Strategy Pattern [28, pg. 315]. We show

the relationships between the classes in Figure 4.10 This important design pattern offers several
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I
DataStream

t

FILE * fp;
open( const char * command, const char * mode 
virtual read(FILE * fp )=O;
virtual write(FILE * fp ) =0,"

i
MatrixBase
int nrows; |
int ncols; |
double * data |
int * col2ptr; |
int * row_idx;)

(MatrixMarketFormat ~ [ Matrix )

(MatlabFormat ~ ] Matrix( GraphBase& gb );

(HarwellBoeingFormat "~//

Matrix( MatrixBase& mb 

/Ha~wenBoeingFo~mat(~raphUa~e~ gb);I IJ
|HarwellBoeingFormat( MatrixBase& mb);I ]
]virtual read( FILE * fp );
~ virtual write( FILE * fp ); )

I
GraphBase
int nvtxs; /
int * vtx weight; |
int * edge_weight;l
int * adj head; |
int * adj-list;

J

UserDefinedFormat

IChaeoFormat "~/
ChacoFormat( GraphBase& gb );1 
ChacoFormat( MatrixBase& mb );I 
virtual read( FILE * fp ); }-J
virtual write( FILE * fp ); J

IGraph

1

Graph( GraphBase& gh );
Graph( MatrixBase& mb );

FIGURE 4.9: Inheritance hierarchy for multiple inatrix formats. A fragment of the inheritance

hierarchy highlighting how multiple file formats are implemented and extended. To add an

additional format, simply inherit from DataStream and one of GraphBa~e or MatrixBase. Then
implement the two pure virtual methods inherited from DataStream.
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Mi.imumPriorityEngine "~_ ~ PriorityStrategy 1

I,; j [ ..o...o, ,; J ,;

FIGURE 4.10: The Strategy Pattern applied to shrinking strategies for the pseudo-diameter
algorithm.

benefits. It provides a more efficient and more extensible alternative to long chains of conditional

statements for selecting desired behavior. It allows new strategies to be implemented without

changing any code in the PseudoDiameter class. It is also more attractive than overriding a

member function of the PseudoDiameter class directly because of the its overall complexity.

4.3.3 Polymorphic Fill-Reducing Orderings

One example where object-oriented implementation had substantial payoffs in terms of extensi-

bility was in our ability to construct polymorphic fill reducing orderings. Recall from Table 3.3

that there are several different types of greedy algorithms, many of which are quite recent. In

fact, there is no known library containing all of these algorithms, besides Spiailfe. While some

of these heuristics are related, others -- particularly MMD and AMD -- are radically different

in the ways that degree is computed, the underlying graph is updated, and what optimizations

are allowed and disallowed. Fundamentally, MMD allows lazy update of the quotient graph by

allowing multiple vertices to be removed between each update. AMD doesn’t require as much

work per graph update, but the graph must be updated after every node is eliminated.

We wanted to use the Strategy Pattern [28, pg. 315] again as we did in Section 4.3.2, but this

time the design was more complicated. The PseudoDiameter class did not know or care about

the way the set of candidate vertices was reduced. The NinPriorityEngine did not know the

formula used to compute the vertices’ priority, but it does need to know if the strategy allows
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FIGURE 4.11: An augmented Strategy Pattern to implement a family of greedy, fill reducing
algorithms.

the lazy update mechanism of MMD or if it needs a single elimination scheme to compute the

tight approximate degrees.

We created a complete fi’amework for the entire family of minimum-degree like algorithms,

but it required an additional virtual function. See Figure 4.11 for the inheritance and composition

relationships. In this arrangement, the class MinimumPriorityEngine (which we will call Engine

for short) is an algorithm that is given a graph, repeatedly selects the node of minimum priority,

eliminates it from the graph, and then updates the graph adding appropriate fill edges when

necessary. The catch is that it has no idea how to determine the priority of the vertices. It

must rely on a PriorityStrategy class (Strategy for short), or more specifically, a specialized

descendant of the strategy.

We listed the benefits of the Strategy Pattern earlier in Section 4.3.2, but there are potential

drawbacks for using this pattern. There is an increased number of classes in the library, one for

each ordering algorithm. This is not a major concern, though users should be insulated from this

by reasonable defaults being provided. Another possible concern is the Communication overhead.

The calling interface must be identical for all the strategies, though individual types may not

need all the information provided. There is a potential for algorithmic overhead in the decoupling

between Engine and Strategy. In our case, the engine could query the strategy once for each
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vertex that needs to be evaluated, though the virtual-function call ovgrhead would become high.

Alternatively, the engine might request all vertices in the remaining graph Gk to be re-prioritized

after each node is eliminated. This may result in too much work being done inside the Strategy.

Luckily, with all these algorithms the only nodes whose priority changes are the ones adjacent

to the most recently eliminated node. The [~uotientGraph keeps track of this information since

it must prevent a node with an unknown (or invalid) priority fl’om being eliminated. In other

words, a vertex cannot be eliminated if any of its neighbors have been eliminated since the last

quotient graph update.

For the entire framework to implement MMD, a class must be derived from the Strategy

abstract base class and override the pure virtual member function computePriority. The Engine

is responsible for maintaining the graph and a priority queue of vertices. It selects the vertex of

minimum priority, removes it from the queue and eliminates it from the QuotientGraph. The

priority of all the neighbors of the most recently eliminated node is changed, so they too are

removed from the priority queue for the time being. When there are no longer any vertices in

the priority queue of the same minimum degree as the first vertex eliminated from this stage, the

Engine updates the graph, and gives a list of all vertices adjacent to newly eliminated ones to

the MMDStrategy class. This class, in turn, computes the new priority of the vertices and inserts

them into the priority queue.

To make this setup efficient, we use a BucketSorter class to implement the priority queue and

a QuotientGrapk class to implement the series of graphs during elimination. The interaction of

these four major objects is shown in Fig. 4.13. We hide the details of how single elimination and

multiple elimination are handled. This too is determined by a simple query to the Strategy class.

When the QuotientGraph is updated, it performs various types of compression which may remove

additionM vertices or modify the list of vertices that need their priority recomputed. When it

calls the Strategy to compute the priorities, it provides a const reference to the Quotientgraph

for it to explore the data-structure without fear of side-effects, and the BucketSorter to insert

the vertices in.
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ine

recomputeNodes = 0 ;
I

bucketlD = queryMinNonemptyBucket( 

node = removeFromBueket( bucketlD )

eliminateSupernode( node 

nodeList = getReachSet( node )

remove( nodeList )

recomputeNodes ~ = nodeList
I

QuotientGraph BucketSorter MinPriorityStrategy

FIGURE 4.14: Interaction of eliminating vertices during ordering.

We mention that infomation from the Strategy must also propagate to the QuotientGraph

as it is required to behave in slightly different ways when updating for single elimination ordering

algorithms (e.g., AMD) and multiple elimination algorithms (e.g., MMD). Thus the Engine must

query the Strategy what type is required and set the QuotientGraph to behave accordingly. This

is handled in the first phase of the execute () function that is overridden from the Engine’s parent

class, SpindleAlgorithm. The interaction of the objects in this phase is shown in Fig. 4.12.

4.4 Balancing Features with Performance

There is a very real danger of adding too many features into a piece of software. Just because

some feature can be added, does not imply that it should be added. Excessively feature-laden

software can actually inhibit flexibility and extensibility as the components become to large and

unwieldy for the user to shape to their specific purposes. Feature-laden software also tends to

become excessively complex and increasingly inefficient.
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Algorithm 4.1 Computing degree using the reachable set iterator. Computing the degree of all
the nodes in List the elegant (but inefficient) way using reachable set iterators. The innocuous
looking ++it hides a cascade of if-then-else tests that must be performed at, each calh

void MinimumDegree::prioritize( const OGraph~ g, List~ i,
PriorityQueue~ pq )

{
for( List::iterator it = l.begin(); it != l.end(); ++it 

int i = *it;
int degree = O;
for( QGraph::reach~terator j = g.reach~egin(i);

j != g.reach_end(i); ++j ) 
degree += g.getNodeWeight( *j 

}
pq.insert( degree, i );

}

4.4.1 Judicious Application of Iterators

One disappointing endeavor was to provide an iterator class to traverse the reachable set of the

QuotientGraph class. Although we were successful in implementing such a class, its performance

was so poor, that its general use was abandoned. This caused an increase in the difficulty of

implementing the various minimum priority strategies. Here we explain why this idea looked

good on paper, why it didn’t work well in practice, and why this problem is unavoidable.

Ideally, one would like to provide a class that iterates over the reachable set so that the priority

computation can be implemented cleanly. In the sample code below, this class is typedef’ed

inside the QuotientGraph class as reach_iterator. We add the additional detail that there

may be a weight associated with each vertex, so degree computation sums the weights of the

nodes in the reachable set.

In fact, we were able to implement such an interface. But there is a hidden overhead that

causes this implementation to be too expensive. The definition of a reachable set is the union

of several non-disjoint subsets. Therefore the iterator must test at each iteration if there are

any more items in the current set, if there are any more sets, and some internal mechanism to

prevent double visiting the same node in different sets. Referring again to Fig. 3.14 note that

the reachable set need not be traversed in sorted order (as presented here), but it cannot allow
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the same vertex to be counted twice through two different enodes. Furthermore the reachable

set does not include the node itself. The most effective way to prevent "double-visiting" is to

maintain an array of length equal to the number of nodes in the graph and flag the appropriate

entry when a node is "visited."

The ReachSetIter class requires privileged access to the [~uotientGraph class though friend-

ship. Since the {~uotientGraph has two adjacency lists per node, the iterator over the reachable

set is a bit more complicated. Most of the details are not dimcult. However the increment oper-

ator becomes excessively tedious. The problem is that the increment operator must re-determine

its state at each call ... Is it already at the end? Are there more nodes in the current list? Are

there more enodes in the enode list? Once there is a next node located, has it been marked? If

so go back to the beginning.

There is a way to evaluate the reachable set manually by iterating over sets of adjacent nodes

and enodes of the quotient graph manually. This is shown in Algorithm 4.2 which is functionally

equivalent to the code in Algorithm 4.1.

The lesson learned here is to be judicious in the use of fancy techniques. The coding ben-

efits of using a reachable set iterator are far outweighed by the speed increase of manually

running through adjacency lists. Note that the latter scheme makes the critical assumption

that every node has a "self-edge" to itself in the list of adjacent enodes. This convenient as-

sumption also increases coupling between the 0uotientGraph class and the descendants of the

MinimumPr ior it yStr at egy class.

4.5 Summary

There is no conflict between object-oriented design and scientific computing. It is true that

some object oriented techniques lead to performance losses but a careful design leads to scientific

computing software that is much easier to understand and use. For successful implementations,

it is crucial to understand which techniques are appropriate for what circumstances. Neither

encapsulation nor inheritance necessarily slows down programs, unless a virtual function is used.
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Algorithm 4.2 Computing degree without using the reachable set iterators. This piece of code
is not as elegant as the equivalent fragment in Figme 4.1, but in terms of efficiency, this method
is the clear winner. In this case, the visited array is part of the MinimumPriorityStrategy

base class along with the nextStamp() member function that always returns a number larger
than any previous number. If the next stamp is the maximum integer, then the visited array
is reinitialized to all zeros.

void MinimumDegree: :prioritize( const QGraph~ g, List~ I,
PriorityQueue& pq )

{
for( List::iterator it = l.begin(); it != l.end(); ++it 

int i = *it;
int degree = O;
int my_stamp = nextStamp() "//get new timestamp
g.visited[ i ] = my_stamp;/i/Mark myself visited
for ( QGraph : : enode~terator e = g. enode_begin (i) 

e != g.enode_end(i); ++e ) 

int enode = *e; l/for all adjacent enodes
for( OGraph::nodeAterator j = g.node_begin(e);

j != g.enode_end(e); ++j ) 

int adj = *j ; //for all adjacent nodes

if ( visited[ adj ] < my_stamp ) 
//if not already visited, mark it and add to degree
visited[ adj ] = my_stamp;

degree += g.getNodeWeight( adj );

}
}

}

}
pq.insert( degree, i );

Good design requires tradeoffs. There is no perfect solution unless we are talking about

pedagogical problems in books. Real life applications have many constraints, most of the time

conflicting.

Decoupling is a perfect example. It can introduce overheads since objects have to commu-

nicate through well defined interfaces. On the other hand, decoupling localizes potential code

changes and increases flexibility. All our algorithms are aware that our Graph class is implemented

as a sorted adjacency list 13. We could have implemented our algorithms to not assume unordered

adjacency lists, but this would have impacted the performance of some of our algorithms. The

tradeoffs between flexibility and efficiency are determined by the interface.

laThe adjacency lists of a QuotientGraph are an exception, they are not sorted.



5. RESULTS

132

This section tabulates all the experimental results we obtained by running our software. Results

on the envelope/wavefront reduction problem are presented first in Section 5.1, followed by results

for the fill reducing heuristics in Section 5.2.

5.1 Envelope/Wavefront Reduction

We describe in Section 5.1.1 how we chose the computational parameters in tile hybrid algorithm.

In Section 5.1.2 we discuss the relative reductions in envelope size and wavefront of eighteen test

problems obtained from RCM, Sloan, spectral, and hybrid algorithms.

5.1.1 Spectral Orderings from Chaco

We use the SymmLQ/P~QI option in Chaco [42] to obtain the Fiedler vector, which is sorted to

produce tile spectral ordering. Chaco takes a multilevel approach, coarsening the grid until it has

less than some user specified number of vertices (1000 seems to be sufficient). Then it computes

the Fiedler vector on the coarse grid, orthogonalizing only for eigenvectors corresponding to

small eigenvalues. Then the coarse grid is refined back to the original grid and the eigenvector

is refined using Rayleigh Quotient Iteration (RQI). This refinement is the dominant cost of the

whole process. During the coarsening, we compute generalized eigenvectors of the weighted

Laplacians of the coarse graphs from the equation Ax = ),D~, where D is the diagonal matrix of

vertex weights. This feature, obtained by turning on the parameter NAKE_VWGTS, speeds up the

eigenvector computation substantially.

Two other parameters, EIGEN_TOLERANCE and COARSE NLEVEL_RQI, control how accurately

eigenvectors are computed and how many levels of graph refinement occur before the approximate

eigenvector is refined using RQI, respectively. We set the value of EIGEN_TOLERANCE to 10-3,

and it was very effective in reducing cpu-time. Even in the case where this tolerance induces

misconvergences, the spectral ordering is still good and the hybrid ordering even better for most
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Problem
1 barth
2 barth4
3 barth5
4 shuttle-eddy
5 copter1
6 copter2
7 fbrdl
8 ford2
9 skirt
0 nasasrb

I 1 commanche_dual
12 tandem_vtx
13 tandem_dual
14 onera_dual
15 bcsstk30
16 pdsl0
17 finance256
18 finance512
19 c_skirt
20 c_nasasrb
21 c_bcsstk30

IvI IEI class
6,691 19,748 1
6,019 17,473 1

15,606 45,878 1
10,429 46,585 1
17,222 96,921 1
55,476 352,238 1
181728 41,424 2

100,196 222,246 2
45,361 1,268,228 2
54,870 1,311,227 2
7,920 11,880 1

18,454 117,448 1
84,069 183,212 1
85,567 116,817 1
28,924 1,007,284 2
16,558 66,550 1
37,376 130,560 2
74,752 261,120 2
14,944 160,461 2
24,953 275,796 2
9,289 111,442 2

Comment

2-D CFD problems

3-D structural problems

3-D CFD problems

--3-D stiffness matrix

linear programs

compressed skirt
compressed nasasrb
compressed bcsstk30

TABLE 5.1: Eighteen test problems for wavefront reduction. For the three problems that com-
pressed well, their compressed versions are also shown.

problems. The COARSE_NLEVEL_ROI parameter didn’t have much effect, so we used the program’s

default value of 2.

5.1.2 Comparison of Algorithms

We consider five ordering algorithms RCM, Sloan with unnormalized weights W1 = 2, W.2 = 1,

Sloan with normalized weights (W1 = 8, W2 = 1 for problems in Class 1, and W1 = 1, W2 = 

for problems in Class 2), spectral, and hybrid (normalized weights W1 = W2 = W3 = 1 for

Class 1 problems, 1£1 = 1, W2 = Wa = 2 for Class 2 problems). When we refer to the Sloan

algorithm without mentioning the weights, we mean the algorithm with normalized weights.

We have compared the quality and time requirements of these algorithms on eighteen problems

(see Table 5.1). The problems are chosen to represent a variety of application areas: structural

analysis, fluid dynamics, and linear programs from stochastic optimization and multicommodity

flows. The complete set of results are shown in Tables 5.2-5.6. The values for all the orderings

are normalized to RCM.
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mswf
Problem RCM

1 barth 1.26e4
2 barth4 1.61e4
3 barth5 5.08e4
4 shuttle 5.84e3
5 copter1 2.84e5
6 copter2 2.26e6
7 ford1 2.65e4
8 tbrd2 3.74e5
9 skirt 1.11e6
0 nasasrb 1.65e5

11 commanche_dual 6.73e3
12 t~ndem_vtx 8.28e5
13 tandem_dual 1.96e6
14 onera_dual 4.86e6
15 bcsstk30 1.07e6
16 pdsl0 3.66e6
17 finance256 9.38e5
18 finance512 5.79e5
19 c-skirt
20 cmasasrb
21 c_bcsstk30

normalized by RCM
Sloan FastSloan spectral hybrid

.48 .43 .43 .30

.40 .21 .20 .15

.56 .18 .18 .14

.60 .60 1.0 .65

.71 .45 .74 .53

.39 .27 .28 .16

.67 .67 .48 .39

.51 .51 .44 .33
.57 .50 .44 .37
.74 .75 .99 .71
.60 .34 .37 .23
.16 .12 .14 .10
.53 .28 .14 .11
.44 .21 .09 .07
.37 .30 .10 .05
.20 .13 .75 .15
.04 .04 .07 .04
.05 .06 .14 .05

.46 .51 .39

.68 1.8 .75

.26 .13 .06

TABLE 5.2: Mean square Wavefront sizes for various algorithms relative to RCM. The numbers
in parentheses after the values for the normalized Sloan algorithm show the class of each problem
(See Section 3).

Initially we discuss the results on the uncompressed graphs, since most of the graphs in our

test collection did not gain much from compression. We discuss later in this section the three

problems that exhibited good gains from compression.

The envelope parameters and tiines reported in the tables are normalized with respect to the

values obtained from RCM. For the Sloan algorithm, two sets of values are reported: the first is

from the unnormalized weights 1/171 = 2, 1472 = 1, and the second from the normalized weights

for Class 1 and Class 2 problems. The normalized Sloan algorithm is labeled by the column

FastSloan in Table 5.2. The results for the compressed problems are indicated by the last three

rOWS.

The Sloan algorithm with the normalized weights reduces the mean-square wavefront on

average to 23% of that of RCM; when unnormalized weights are used in the Sloan algorithm,

the mean square wavefront is 36% of that of RCM. (Henceforth, a performance figure should be

interpreted to be the average value for the problems in the test collection; we shall not state this
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Problem RCM

1 barth 164
2 barth4 204
3 barth5 351
4 shuttle 167
5 copter1 797
6 copter2 2,447
7 ford1 223
8 ford2 884
9 skirt 1,745
0 nasasrb 840

11 commanche_dual 150
12 tandem_vtx 1,489
13 tandem_dual 2,008
14 onera_dual 3,096
15 bcsstk30 1,734
16 pdsl0 2,996
17 finance256 1,437
18 finance512 879
19 c~kirt
20 cmasasrb
21 c_bcsstk30

normalized by RCM
Sloan FastSloan spectral hybrid

.66 .65 .64 .53

.60 .42 .37 .34

.77 .44 .42 .39

.85 .66 1.30 .67

.84 .58 .65 .57

.58 .49 .43 .32

.86 .86 .96 .78

.74 .78 .91 .76

.65 .84 .65 .57

.73 .91 1.20 .86

.83 .55 .55 .44

.38 .30 .29 .25

.72 .55 .34 .30

.67 .45 .34 .30

.63 .64 .38 .22

.48 .40 1.00 .28

.22 .22 .30 .21
.28 .32 .85 .49

.67 .68 .54

.71 2.3 .78

.52 .40 .23

TABLE 5.3: Maximum wavefl’ont sizes relative to the RCM algorithm.
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explicitly.) The hybrid reduces mean-square waveffont to 14% of that of RCM, and to 60% of

that of (normalized) Sloan. The hybrid algorithm computes the smallest mean square wavefront

for all but three of the eighteen problems. Note that even for the problems where the spectral

algorithm does poorly relative to the Sloan algorithm, the post-processing enables the hybrid

algorithm to compute relatively small wavefronts. In general, the spectral and Sloan algorithms

tend to vie for second place with P~CM finishing fourth.

These algorithms also yield smaller maximum wavefront sizes than RCM. The normalized

Sloan algorithm yields values about 52% of RCM, while the hybrid computes values about 38%

of RCM. Thus these algorithms lead to reduced storage requirements for frontal factorization

methods.

The results for the envelope size are similar. The hybrid, on average, reduces the envelope

size to 37% of that of the RCM ordering, and to 73% of that of the normalized Sloan algorithm.

The Sloan, spectral, and the hybrid algorithms all reduce the wavefront size and envelope size

at the expense of increased bandwidth. This is expected for the Sloan algorithm since Figures 3.8
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Problem
1 barth
2 barth4
3 barth5
4 shuttle
5 copter1
6 copter2
7 ford1
8 ford2
9 skirt
0 nasasrb

11 commanche_dual
12 tandem_vtx
13 tandem_dual
14 onera_dual
15 bcsstk30
16 pdsl0
17 finance256
18 finance512
19 c~skirt
20 cmasasrb
21 c_bcsstk30

lenv(A)l
RCM

normalized by RCM
Sloan FastSloan spectral hybrid

.69 .66 .66 .55

.64 .47 .46 .40
.75 .43 .44 .39
.81 .82 1.00 .85
.84 .68 .89 .74
.63 .53 .56 .43
.81 .80 .68 .61
.71 .71 .65 .56
.77 .72 .70 .63
.89 .88 .99 .87
.73 .59 .61 .47
.42 .37 .40 .34
.72 .54 .39 .34
.66 .46 .31 .27
.60 .53 .33 .25
.41 .34 .82 .38
.20 .22 .28 .20
.21 .25 .34 .20

.70 .74 .65
.86 1.10 .89
.52 .38 .26

7.01e5
7.03e5
3.26e6
7.09e5
8.62e6
7.55e7
2.90e6
5.72e7
4.42e7
2.06e7
5.90e5
1.53e7
1.22e8
1.71e8
2.66e7
2.95e7
3.26e7
5.55e7

TABLE 5.4: Envelope sizes relative to RCM.

bandwidth
Problem RCM

1 barth 199
2 barth4 218
3 barth5 373
4 shuttle 238
5 copter1 932
6 copter2 2,975
7 ford1 258
8 ford2 963
9 skirt 2,070
0 nasasrb 881

11 commanche_dual 155
12 tandem_vtx 1,847
13 tandem_dual 2,199
14 onera_dual 3,478
15 bcsstk30 2,826
16 pdsl0 4,235
17 finance256 2,014
18 finance512 1,306
19 c_skirt
20 cmasasrb
21 c_bcsstk30

normalized by RCM
Sloan FastSloan spectral hybrid
2.93 4.53 1.76 4.15
5.02 7.04 2.64 7.39
3.44 8.91 1.96 5.19
3.50 3.39 2.66 4.05
3.80 7.34 1.02 7.82
4.05 11.4 1.89 8.39
7.67 6.91 12.0 12.0
7.06 12.1 5.75 8.04
9.37 3.66 2.13 2.15
5.82 5.83 4.17 5.57
9.94 15.9 2.52 8.15
2.35 3.56 1.39 2.29
3.55 9.07 2.92 4.72
8.93 11.3 2.08 3.19
5.60 5.11 1.91 2.28
3.59 3.77 1.87 3.58
4.41 4.11 2.49 2.44
3.26 2.88 2.84 2.38

6.07 3.19 3.16
5.81 6.83 4.72
4.02 2.05 2.03

TABLE 5.5: Bandwidths relative to RCM.
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bandwidth
Problem RCM

1 barth .13
2 barth4 .05
3 barth5 .16
4 shuttle ,12
5 copter1 .13
6 copter2 .88
7 ford1 .30
8 ford2 1.1
9 skir~ 5.0
0 nasasrb 3.3

11 commanche_dual .07
12 tandem_vtx .27
13 tandem_dual 1.4
14 onera_dual 1.2
15 bcsstk30 3.7
16 pdsl0 .35
17 finance256 .51
18 finance512 1.0
19 c_skirt
20 cmasasrb
21 c_bcsstk30

normalized by 1KCM
fast sloan spectral hybrid

1.9 10. 11.
3.4 18. 20.
2.7 19. 21.
2.7 15. 17.
4.7 25. 28.
3.0 18. 20.
1.7 12. 13.
2.7 19. 21.
1.7 3.7 4.5
2.3 8.5 9.7
2.1 19. 19.
2.7 14. 16.
2.2 14. 15.
2.3 15. 15.
1.7 3.2 4.0
2.1 36. 37.
2.4 16. 18.
2.3 17. 18.
.33 .69 .91
.49 1.8 2.3
.34 .56 .74

TABLE 5.6: CPU times relative to the RCM algorithm.

and 3.9 show that the weights yielding small wavefront sizes are quite different from the weights

for small bandwidth. It is also not surprising for the spectral and the hybrid algorithms since

their objective functions, 2-sum (for spectral, see [34]) and wave front size (for the hybrid) differ

fi’om the bandwidth.

On these test problems, our efficient implementation of the Sloan algorithm requires on aver-

age only 2.1 times that of the time taken by the RCM algorithm. The hybrid algorithm requires

about 5.0 times the time taken by the Sloan algorithm on the average. This ratio is always greater

than one, since the hybrid algorithm uses second step of the Sloan algorithm (numbering the vet-

rices) to refine the spectral ordering, and the eigenvector computation is much more expensive

than the first step of the Sloan algorithm (the pseudo-diameter computation). We believe that

these time requirements are small for the applications that we consider: preconditioned iterative

methods and frontal solvers.
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5.1.2.a Gains from Compressed Graphs

As discussed in Section 3.2.4, the use of the supervariable connectivity graph [26] (called the com-

pressed graph by AshcraR [3]) can lead to further gain in the execution times of the algorithms.

Only three of the problems, skirt, nasasrb, bcsstk30, compressed well. This is because many

of the multicomponent finite element problems in our test set had only one node representing

the multiple degrees of freedom at that node. The compression feature is an important part of

many software packages for solving PDE’s, since it results in reduced running times and storage

overheads, and our results Mso show impressive gains from compression.

Three problems in our test set compressed well: skirt, nasasrb, and bcsstk30. Results for

these problems are shown in the last three rows of each table. The numbers of multivertices and

edges in the compressed graphs are also shown. For these three problems, compression speeds

up the Sloan algorithm on average by a factor of nearly 5, and the hybrid algorithm by a factor

of 4.6.

Compression improves the quality of the Sloan algorithm for these three problems, and does

not have much impact on the hybrid algorithm. This improved quality of the compressed Sloan

algorithm follows from our choice of parameters in the compressed algorithm to correspond

exactly to their values in the uncompressed graph. However, on nasasrb, the spectral envelope

parameters deteriorate upon compression. We do not know the reason for this, but it could be

due to the poorer quality of the eigenvector computed for the weighted problem. In any case,

the compressed hybrid algorithm recoups most of this deterioration.

5.2 Polymorphic Minimum Fill

In Section 5.2.1 we compare the quality and runtime of Spindle against other implementations

that are publicly available. We compare different heuristics derived froth priorityStrategy in

Section 5.2.2. In Section 5.2.3 we examine how these different heuristics behave in more detail

by switching the heuristic in the middle of the computation and examining how the behavior

changes. Finally in Section 5.2.4, we react to recent work by Bornstein [14], who reports that
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state-of-art minimum degree algorithms perform poorly compared to state-of-art nested dissection

algorithms.

Our test set is listed in Table 5.7. The matrices are ordered in increasing size of the factor

using MMD ordering. Each number reported is the average of 11 runs with different seeds in the

random number generator. All the software was compiled with the EGCS compilers 1 which is a

publicly available experimental branch of the GNU compilers 2

5.2.1 Comparing Implementations

While these algorithms are conceptually simple, they are very challenging to implement and to

optimize. There are a few publicly available implementations of MMD and AMD. The original

implementation of MMD by Liu [56] is called GENMMD, One of the original implementations of

AMD is AMDBAI{ by Amestoy, Davis and Duff [2]. This is a publicly released version, there is

another version that is included with the Harwell Sparse Library. The newer algorithms by Ng

and Raghavan [62] and Rothberg and Eisenstat [71] were reported by modifying each of the two

implementations above; neither group has released their modified versions.

A third implementation of multiple minimum degree that we compare against is written by

Ashcraft and extracted from a much larger body of software. The component we use, MSMD

(Multi-Stage Minimum Degree) is designed to work in multiple stages -- commonly as the degen-

erate case in a nested dissection ordering. It was originally released in SMOOTH [5] and later in

a larger project with several contributers called SPOOLES [4]. This implementation by Ashcraft

is the closest to our own in spirit. It is an object based design, though implemented in C. None

of the implementations mentioned above implement all the heuristics provided in Spia~le, though

SPOOLES does have MMD and a variety of alternate settings that, in effect, implement AMD

with weaker approximations.

lhttp://www.cygnus.com
2http://www.gnu.org



140

TABLE 5.7: Test Set for Fill
factor fox" Spin~/e’s MMD.

Problem
1 commanche
2 barth4
3 barth
4 bcsstk34
5 fordl
6 ken13
7 barth5
8 shuttle_eddy
9 bcsstk38

10 bcsstk18
11 bcsstk23
12 bcsstk16
13 bcsstk15
14 bcsstk17
15 pwt
16 ford2
17 crystk01
18 bcsstk35
19 msc10848
20 bcsstk37
21 msc23052
22 bcsstk36
23 bcsstk30
24 tandem_vtx
25 pdslO
26 bcsstk32
27 struct3
28 copterl
29 bcsstk33
30 struct4
31 bcsstk31
32 crystk02
33 nasasrb
34 skirt
35 tandem_dual
36 onera_dual
37 copter2
38 crystk03
39 3dtube
40 cfdl
41 gearbox
42 cfd2

Ivl
7,920
6,019
6,691

588
18,728
28,632
15,606
10,429
8,032

11,948
3,134
4,884
3,948

10,974
36,519

100,196
4,875

30,237
10,848
25,503
23,052
23,052
28,924
18,454
16,558
44,609
53,570
17,222
8,738
4,350

35,588
13,965
54,870
45,361
94,069
85,567
55,476
24,696
45,330
70,656

153,746
123,440

Reducing Orderings. The

[El
11,880
17,473
19,748
10,415
41,424
66,586
45,878
46,585

173,714
68,571
21,022

142,747
56,934

208,838
144,794
222,246
155,508
709,963
609,465
557,737
565,881
560,044

1,007,284
117,448
66,550

985,046
560,062

96,921
291,583
116,724
572,914
477,309

1,311,227
1,268,228

183,212
166,817
352,238
863,241

1,584,144
878,854

4,463,329
1,482,229

test. set is sorted by increasing work to
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We compare the performance of GENMMD, AMDBAR, SPOOLE’S, and Spini~le in Tables 5.8

and 5.9. Table 5.8 focuses on relative performance of Multiple Minimum Degree (MMD) imple-

mentations. All numbers are normalized by the corresponding value of Spini}Ie’s MMD. We list

the relative size of the factor (storage), the amount of computational work required to compute

the factor (work), and the time required to compute the ordering. This information is tabulated

for Approximate Minimum Degree (AMD) in Table 5.9.

GENMMD is over 500 lines Fortran77 code with four subroutines, and 30+ goto statements. It

is optimized in terms of speed as well as memory requirements. The same array is used to maintain

several distinct linked lists at the same time. For SPOOLES, we set it to do multiple elimination,

precompress the graph, do compression of 2-adjacent supernodes at each elimination step, and

exact quotient graph updates. The quality of the result between GENMMD, SPOOLES, and

Spini~/e is very close. The difference between them could easily be discrepancies in how tie breaking

is handled inside each code. In every case where Spini)[e’s MMD is faster than GENMMD, it is

because Spinh(e’s MMD precompresses the graph and GENMMD does not. Spindle is generally

slower than GENMMD and for this test set SPOOLES is slightly slower than Spini)[e’s MMD.

An interesting exception is for the problem number 17, pdsl0. Both the GENMMD and spinhle’s

MMD implementations take a significant amount of time to compute the ordering, especially

considering the size of the problem, but SPOOLES seems to not suffer. We will investigate this

problem in some detail in Section 5.2.3.

AMDBAR is also over 500 lines of Fortran77 code with 30+ goto statements and is organized

into a single subroutine. Because AMD can do more aggressive graph compression at each

elimination step, precompression is not an issue and AMDBAR soundly beats Spini)[e’s AMD in

execution time. There are, however, three exceptional cases where AMDBAR runs significantly

slower than Spini)[e’s AMD: ford2, gearbox, and cfd2. Looking at the unnormalized data and

the size of the problems involved, it is clear that AMDBAR is taking an inordinate amount of

time to compute the orderings for these problems. We have not taken the time to understand

why AMDBAP~ has difficulty in these instances. Because of the structure of tile AMDBAR code,
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problem

1 commanche
2 barth4
3 barth
4 bcsstk34
5 ford1
6 kenl3
7 barth
8 shuttle_eddy
9 bcsstk38

10 bcsstk18
11 bcsstk23
12 bcsstk16
13 bcsstk15
14 bcsstk17
15 pwt
16 ford2
17 crystk01
18 bcsstk35
19 msc10848
20 bcsstk37
21 msc23052
22 bcsstk36
23 bcsstk30
24 tandem_vtx
25 pdsl0
20 bcsstk32
27 struct3
28 copterl
29 bcsstk33
30 struct4
31 bcsstk31
32 crystk02
33 nasasrb
34 skirt
35 tandem_dual
36 onera_dual
37 copter2
38 crystk03
39 3dtube
40 cfdl
41 gearbox
42 cfd2
geometric mean
mean

GENMMD/Spindle
size work time
1.00 .97 .23
.99 .98 .27
.99 .97 .31

1.00 1.01 .75
1.00 .99 .37
1.00 1.00 1.57
1.00 1.01 .34
1.01 1.04 .37
1.03 1.07 1.02
1.01 1.02 .34
.99 .96 .39
.98 .96 .98

1.00 1.00 .37
1.03 1.06 .89
1.00 1.01 .53
1.01 1.05 .67
.97 .93 .97

1.01 1.00 2.14
1.02 1.04 1.54
1.00 .99 1.41
1.01 1.02 1.90
1.02 1.02 1.88
1.03 1.07 1.45
1.00 .99 .39
.99 .99 .78

1.00 .96 1.80
1.00 .99 .92
1.00 .99 .31
.99 .97 .57

1.05 1.11 .22
1.04 1.07 1.00
.98 .95 1.15

1.00 1.01 1.66
1.01 1.01 1.74
.99 .95 .86

1.00 1.00 .84
1.01 1.01 .60
1.00 1.00 1.16
1.00 1.02 1.61
1.00 1.00 .42
1.01 1.02 2.67
1.00 .99 .57
1.00 1.00 .77
1.00 1.01 .95

SPOOLES/Spindle
size work time
1.03 1.04 .62
1.01 1.00 .77
1.01 .99 .72
1.04 1.08 1.50
1.02 1.04 .70
1.02 1.01 1.46
1.00 .97 .74
1.01 1.01 .78
1.03 1.09 2.36
1.06 1.16 .58
1.01 1.01 .39
1.00 .99 3.37
.99 .97 .50

1.06 1.16 2.57
1.03 1.07 .85
1.06 1.17 .90
.98 .95 3.40

1.01 .99 7.16
1.02 1.03 6.18
1.02 1.03 5.09
1.02 1.05 8.13
1.02 1.05 7.64
1.04 1.08 3.46
1.03 1.09 .65
1.04 1.02 .07
1.00 .98 4.01
1.05 1.09 1.38
.97 .95 .46

1.01 1.02 1.51
1.04 1.10 .21
1.08 1.19 1.86
.98 .95 3.41

1.14 1.52 2.55
1.04 1.07 3.70
1.05 1.09 .70
1.05 1.08 .68
1.01 1.02 .64
1.00 1.00 3.11
1.00 1.01 3.25

.98 .94 .41
1.01 ] .03 3.50
.99 .98 .48

1.02 1..08 1.36
1.02 1.08 2.20

TABLE 5.8: Relative Performance of MMD implementations GENMMD and SPOOLES against

Spindle.For each implementation, we present the size of the factor, the amount of work required

to compute the numerical values in the factor, and the time taken to generate the ordering.
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problem

1 commanche
2 barth4
3 barth
4 bcsstk34
5 ford1
6 ken13
7 barth5
8 shuttle_eddy
9 besstk38

10 bcsstk18
11 bcsstk23
12 bcsstkl6
13 besstkl5
14 bcsstkl7
15 pwt
16 ford2
17 crystk01
18 besstk35
19 msc10848
20 besstk37
21 msc23052
22 besstk36
23 besstk30
24 tandem_vtx
25 pdslO
26 bcsstk32
27 struct3
28 copterl
29 bcsstk33
30 struct4
31 besstk31
32 erystk02
33 nasasrb
34 skirt
35 tandem_dual
36 onera_dual
37 copter2
38 crystk03
39 3dtube
40 cfdl
41 gearbox
42 cfd2
geometric mean
mean

AMDBAR/Spindle
size work time
1.00 .99 .10

.99 .98 .14
1.00 1.01 .12
.99 .98 .33

1.00 1.02 .18
1.00 1.01 .30
1.00 1.00 .19
1.00 1.00 .18
1.01 1.01 .34
1.00 1.00 .21
1.00 1.01 .24
.99 .98 .34

1.01 1.03 .30
1.01 1.04 .32
.99 .96 .37
.99 .96 41.46
.96 .91 .40
.99 .88 .54

1.01 1.04 .59
1.00 .99 .52
1.00 1.00 .53
1.01 1.04 .51
1.01 1.02 .59
1.01 1.03 .32

.99 .98 .38
1.00 1.00 .59
1.00 1.02 .45
1.01 1.03 .26
1.00 .99 .39
.99 .96 .44

1.01 1.02 .54
.97 .94 .52

1.00 1.00 .66
1.01 1.01 .65
1.00 .99 .42
1.02 1.04 .38
1.02 1.05 .49
.98 .95 .58
.98 .96 .79
.99 .97 .71

1.01 1.03 25.84
1.01 1.02 17.91
1.00 1.00 .50
1.00 1.00 2.41

SPOOLES/Spindle
size work time
1.05 1.09 .34
1.02 1.02 .47
1.02 1.02 .41
1.03 1.07 1.44
1.03 1.06 .40
1.00 .96 2.52
1.01 1.00 .46
1.02 1.02 .56
1.01 1.02 2.03
1.46 2.08 .65
1.03 1.07 .73
1.01 1.01 2.16
1.01 1.03 1.14
1.15 1.30 1.50
1.02 1.00 .57
1.04 1.07 .52
.99 .98 2.44

1.00 .99 2.38
1.00 .99 4.46
.99 .98 2.14

1.01 1.03 2.87
1.00 1.01 2.59
1.02 1.04 2.80
1.04 1.09 .70
1.01 1.00 1.04
1.01 1.01 2.00
1.04 1.07 .92
1.01 1.03 .58
1.00 1.01 2.06
1.04 1.07 1.91
1.02 1.00 1.48

.99 .98 2.68
1.03 1.09 1.87
1.04 1.08 2.23
1.05 1.08 .58
1.06 1.10 .54
1.03 1.06 .72
.99 .98 2.41
.98 .95 2.50
.99 .96 1.07

1.03 1.10 2.27
1.00 .99 1.78
1.03 1.05 1.24
1.03 1.06 1.54

TABLE 5.9: Relative Performance of AMD implementations AMDBAR and SPOOLES against

Spindle. For each implementation, we present the size of the factor, the amount of work required

to compute the numerical values in the factor, and the time taken to generate the ordering.
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common analysis techniques, such as running a basic block profiler ~s not immediately helpful.

In terms of quality, because AMD does not rely on independent sets of vertices it appears to not

be as sensitive to tie breaking. The quality of the results in the AMDBAR and Spin~[e’s AMD

implementations are very close. To set SPOOLES on an equal footing, we set it to do single

elimination, do approximate quotient graph updates, and aggressive graph compressions at each

step. This is the closest setting to an AMD ordering, the quality of the results for SPOOLES at

these settings is slightly inferior to AMDBAR and Spi~4i)/e’s AMD.

5.2.2 Different Algorithms within Spindle

The following three Tables 5.10-5.12 compare the storage, work and execution time for a collection

of different heuristics derived from the PriorityStrategy class. We chose to compare the MMD

and AMD implementations as well as the algorithms proposed by Rothberg and Eisenstat [71]

Minimum Mean Fill (MMF) and Minimum Increase in Neighbor Degree (MIND), both the 

based and AMD based versions. The data for tile different heuristics is normalized by the results

of the MMD ordering.

For this test set, we see that the quality of the results from MMD and AMD are very close.

We also see that AMMF is better than MMF but that AMIND is slightly worse than MIND.

This is consistent with results reported by Rothberg and Eisenstat [71]. Comparing the times

in Table 5.12 we see that AMD has a definite advantage over MMD and that the overheads in

computing fill or increase in neighbor degree is on par with the results reported in [71].

Considering Table 5.12 in detail, ken13, shows that multiple elimination strategies tend to

perform 2.5-3 times faster than corresponding approximate elimination strategies. Conversely

for pdsl0, the multiple elimination strategies take a large amount of time and the corresponding

approximate elimination strategies are over 25 times faster. Interestingly, ken13 and pdsl0 are

not very different in size and both come from multi-commodity flow problems.

To better illustrate the behaviors of these algorithms on these problems, see Figure 5.1. For

each plot, the bottom line is the cumulative number of supernodes that are eliminated, the top
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size
Problem MMD

1 commanche 76,127
2 barth4 115,987
3 barth 111,781
4 bcsstk34 46,573
5 fordl 315,851
6 kenl3 344,355
7 barth5 374,285
8 shuttle_eddy 381,568
9 bcsstk38 733,484

10 bcsstk18 632,545
11 bcsstk23 462,048
12 bcsstk16 754,298
13 bcsstk15 655,977
14 bcsstk17 1,106,613
15 pwt 1,757,057
16 ford2 2,408,562
17 crystkO1 1,089,378
18 bcsstk35 2,730,331
19 msc10848 1,979,471
20 bcsstk37 2,820,230
21 msc23052 2,725,581
22 bcsstk36 2,737,589
23 bcsstk30 3,739,015
24 tandem_vtx 2,634954
25 pdslO 1,627,376
26 bcsstk32 5,215,869
27 struct3 5,342,841
28 copter1 2,478,886
29 bcsstk33 2,666,854
30 struct4 2,237,851
31 bcsstk31 5,134,592
32 crystk02 6,170,998
33 nasasrb 12,515,804
34 skirt 10,807,462
35 tandem_dual 11,400,057
36 onera_dual 11,046,392
37 copter2 14,095,311
38 crystk03 14,140,693
39 3dtube 31,845,622
40 cfdl 39,970,236
41 gearbox 52,908,796
42 cfd2 91,232,664
geometric mean
mean

normalized by MMD
AMD MMF AMMF MIND AMIND MMMD

.99 .97 .98 .97 .98 .98

.99 .95 .94 .94 .95 .96

.98 .95 .97 .98 .98 .98

.98 .91 .87 .88 .84 .88

.99 .98 .98 .97 .98 .98
1.02 1.00 1.01 1.02 1.01 .98

.99 .94 .94 .95 .94 .99
1.00 .93 .92 .93 .94 .95
1.00 1.02 .93 .98 .96 .95
1.00 .96 .90 .92 .92 .92

.98 .88 .84 .87 .88 .93

.98 .96 .94 .86 .91 1.00
1.00 .96 .89 .92 .90 .96
1.00 .97 .95 .96 1.00 .93
1.01 .97 .96 .96 .97 .96
1.01 .93 .94 .93 .95 .97
1.01 .98 .99 .87 .94 .96
1.00 .98 .99 .98 1.00 .90
1.00 1.13 1.08 .97 .97 .98
1.00 .98 .96 .98 .99 1.00
1.00 1.00 .99 .99 .99 .97
1.00 .99 .99 .98 .99 .98
1.00 .94 .93 .91 .93 .98

.98 .79 .79 .84 .85 .95

.97 .97 .96 .94 .94 .89

.98 .95 .93 .94 .95 1.00

.99 1.08 .94 .96 .96 .95

.97 .84 .82 .88 .85 .87

.99 .94 .90 .85 .96 .95
1.01 .84 .78 .81 .83 .91
1.01 .91 .85 .92 .88 .85
1.00 .87 .90 .81 .92 .97

.99 .93 .84 .95 .92 .83
.99 .95 .93 .89 .91 .93
.98 .75 .75 .80 .81 .85
.98 .74 .76 .79 .81 .86
.98 .74 .74 .80 .80 .85

1.00 .86 .88 .79 .89 .81
1.01 .87 .90 .85 .89 .86
1.00 .72 .73 .75 .81 .81

.99 .91 .92 .87 .91 .89

.99 .73 .76 .76 .81 .79

.99 .92 .90 .90 .92 .92

.99 .92 .90 .90 .92 .93

TABLE 5.10: Storage requirements for factors using various fill-reducing orderings.
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work x 106
Problem MMD

1 commanche 1.67
2 barth4 4.00
3 barth 4.36
4 bcsstk34 4.77
5 ford1 15.7
6 kenl3 16.0
7 barth5 19.0
8 shuttle_eddy 25.3
9 bcsstk38 117.

10 bcsstk18 125.
11 bcsstk23 147.
12 bcsstk16 153.
13 bcsstkl5 169.
14 bcsstk17 188.
15 pwt 222.
16 ford2 290.
17 crystk01 342.
18 bcsstk35 393.
19 msc10848 534.
20 bcsstk37 556.
21 msc23052 598.
22 bcsstk36 612.
23 bcsstk30 887.
24 tandem_vtx 958.
25 pdslO 1,040.
26 bcsstk32 1,120.
27 struct3 1,240.
28 copter1 1,310.
29 bcsstk33 1,330.
30 struct4 1,750.
31 bcsstk31 2,380.
32 crystk02 4,430.
33 nasasrb 5,150.
34 skirt 5,560.
35 tandem_dual 8,330.
36 onera_dual 9,590.
37 copter2 12,400.
38 crystk03 13,600.
39 3dtube 42,200.
40 cfdl 47,900.
41 gearbox 57,200.
42 cfd2 185,000.
geometric n]ean
n’lean

normalized by MMD
AMD MMF AMMF MIND AMIND MMDF

.98 .90 .91 .89 .91 .91-

.97 .83 .82 .81 .83 .88

.95 .84 .88 :90 .91 .90

.95 .78 .71 .73 .66 .74

.97 .92 .92 .91 .93 .91
1.06 .97 1.00 1.03 .99 .94

.98 .83 .82 .84 .82 .88
1.00 .80 .77 .80 .83 .88
1.01 1.00 .78 .93 .88 .98
1.02 .90 .76 .82 .83 .90
.95 .73 .65 .74 .75 .83
.96 .87 .84 .70 .80 .84
.98 .85 .71 .82 .79 .86

1.01 .88 .81 .89 .97 .90
1.06 .91 .89 .92 .93 .92
1.06 .79 .81 .81 .84 .84
1.03 .89 .92 .72 .85 .80
1.01 .91 .92 .91 .94 .96
.99 1.34 1.17 .96 .94 .96

1.00 .90 .87 .96 .94 .91
1.02 .98 .92 .92 .93 .91
1.00 .93 .94 .90 .92 .90
1.00 .81 .77 .78 .81 .86
.95 .56 .56 .68 .69 .77
.93 .93 .92 .88 .88 .99
.94 .82 .78 .81 .83 .82
.99 1.26 .83 .92 .91 .89
.94 .64 .61 .77 .71 .82
.98 .80 .72 .67 .84 .73

1.03 .68 .58 .66 .69 .72
1.04 .81 .67 .81 .72 .92
.99 .70 .75 .63 .83 .67
.98 .91 .66 .95 .82 .84
.97 .86 .82 .75 .78 .83
.93 .50 .50 .60 .62 .70
.95 .49 .54 .60 .62 .71
.95 .53 .54 .64 .65 .74

1.00 .67 .72 .62 .76 .65
1.02 .77 .80 .75 .80 .77
1.01 .47 .49 .56 .65 .68
.98 .74 .79 .72 .79 .77
.96 .53 .57 .58 .67 .65
.99 .80 .76 .78 .81 .83
.99 .82 .77. .79 .82 .83

TABLE 5.11: Work requirements for factors using various fill-reducing orderings.
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time (sees)
Problem MMD

1 commanche .21
2 barth4 .15
3 barth .18
4 bcsstk34 .02
5 ford1 .56
6 kenl3 1.28
7 barth5 .44
8 shuttle_eddy .28
9 bcsstk38 .31

10 besstkl8 .79
11 bcsstk23 .41
12 bcsstk16 .12
13 besstk15 .42
14 bcsstkl7 .28
15 pwt 1.29
16 ford2 3.97
17 crystkO1 .13
18 bcsstk35 .36
19 msc10848 .20
20 besstk37 .35
21 msc23052 .23
22 bcsstk36 .23
23 bcsstk30 .66
24 tandem_vtx 1.18
25 pdsl0 48.65
26 bcsstk32 .90
27 struct3 2.03
28 copter1 1.26
29 besstk33 .56
30 struet4 2.54
31 besstk31 1.35
32 crystk02 .45
33 nasasrb 1.78
34 skirt 1.44
35 tandem_dual 6.09
36 onera_dual 5.66
37 copter2 5.47
38 crystk03 .93
39 3dtube 1.81
40 efdl 14.46
41 gearbox 5.39
42 cfd2 21.36
geometric mean
mean

normalized by MMD
AMD MMF AMMF MIND AMIND MMMD

2.46 1.28 2.60 1.21 2.53 1.09
2.01 1.29 2.16 1.23 2.23 1.17
2.23 1.34 2.40 1.28 2.41 1.20

.90 1.45 1.15 1.10 .80 1.30
2.04 1.27 2.16 1.19 2.15 1.11
2.61 1.16 2.87 1.13 3.05 1.10
1.88 1.26 2.00 1.21 2.03 1.10
1.74 1.27 1.87 1.17 1.86 1.07
.65 1.94 .77 1.28 .82 1.20
.95 1.80 1.01 1.21 1.01 1.09
.47 2.04 .61 1.17 .52 1.05
.97 2.15 1.55 1.19 1.40 1.15
.46 2.54 .77 1.19 .60 1.06

1.10 1.62 1.35 1.28 1.35 1.14
1.55 1.34 1.64 1.19 1.65 1.05
1.74 1.20 1.84 1.15 1.81 1.12
.87 2.20 1.47 1.06 1.20 .94

1.34 1.39 1.54 1.41 1.66 1.20
1.06 2.71 1.23 1.31 1.28 1.13
1.27 1.65 1.45 1.53 1.61 1.30
1.32 1.27 1.54 1.41 1.76 1.18
1.42 1.32 1.58 1.41 1.75 1.16

.98 1.66 1.07 1.33 1.18 1.15
1.02 1.37 1.20 1.20 1.18 1.10

.05 1.01 .02 1.43 .05 1.22
1.09 1.70 1.25 1.36 1.33 1.17
1.07 6.09 .97 1.23 1.06 1.18
1.03 ]..56 1.38 1.11 1.18 1.02
.49 4.20 .88 1.16 .66 1.09
.13 4.50 .33 .98 .18 .93
.85 1.71 .97 1.27 1.05 1.13
.73 1.67 1.20 1.02 1.08 .91
.84 2.16 1.05 1.53 1.18 1.23
.79 2.34 .99 1.36 1.09 1.08

1.24 1.20 1.35 1.13 1.33 1.06
1.28 1.20 1.34 1.13 1.34 1.06
.92 1.25 1.05 1.13 1.05 1.02
.71 1.54 1.04 1.02 1.05 .89
.74 1.29 1.05 1.12 1.20 .92
.40 1.22 .50 .96 .54 .88
.79 2.59 .96 1.30 1.17 1.03
.47 1.17 .59 1.00 .64 .90
.92 1.69 1.13 1.21 1.12 1.09

1.11 1.85 1.3Q 1.22 1.31 1.09

TABLE 5.12: CPU time to generate various fill-reducing orderings.
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line is the sum of the first line plus the number remaining supernodes in the quotient graph.

The bottom line is strictly increasing since there is always at least one supernode eliminated

at each step. The top line is non-increasing; decreasing only when indistinguishable supernodes

are detected and removed. The horizontal axis is cpu time since each elimination stage has a

different update cost.

Figures 5.1a and 5.1b show the pdsl0 problem for MMD and AMD respectively. Figures 5.1c

and 5.1d show the same for the kenl3 test matrix. In both cases, MMD is faster in the beginning,

however, we can see in the case of pdsl0 that the rate of convergence between the two lines slows

drastically where AMD does not.

To investigate why these algorithms behave so differently on these two different problems, we

exercise an additional feature from using the Strategy Pattern in our design.

5.2.3 Switching Algorithms Mid-Stream

Because our implementation is object-oriented and because we paid careful attention to decom-

position of duties between the objects, we have some additional flexibility in our system that we

can exercise. The MinPriority algorithm class uses the services of a PriorityStrategy, but

never knows exactly which one it is using, so the exact type of strategy can be switched in the

middle of the ordering computation.

For this to be successful, the MinPriority and quotientGraph classes must be amenable to

dynamically changing some of their characteristics as well. The exact type of PriorityStrategy

must communicate to the ~IinPriority algorithm whether to do single or multiple elimination

and it must notify the QuotientGraph class whether to do approximate updates, or exact updates.

We created a Switcher class that implements MMD until a certain condition is met. After

that condition is met, it changes its behavior to AMD. For the purposes of this experiment,

the conditions required to switch from MMD to AMD was simply the percentage of original

nodes that were eliminated from the quotient graph. In Figures 5.2 and 5.3 we show how pdsl0
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FIGURE 5.1: Plots of cumulative number of eliminated supernodes (bottom line) and total
supernodes either eliminated or outstanding (top line) vs. execution, time. The two lines converge
when all principal supernodes that exist have been eliminated.
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FIGURE 5.2: Details of pdsl0 when dynamically changing from MMD to AMD at different
points in the ordering. Each bar represents a different run of the software with CPU time in
the vertical direction. Each run starts with MMD and then switches to AMD when a certain
percentage of the total permutation is determined. This percentage is shown on the horizontal
axis. After the switch, AMD is used to complete the ordering. There are two numbers above each
bar. The lower of the two is the number of supernodes in the quotient graph at the time MMD
algorithm cedes control to AMD. The upper mlmber is the number of supernode eliminations
performed by AMD to complete the ordering. These two numbers are not necessarily the same
by virtue of supernode amalgamation, though the upper number can be no greater than the lower
one.

and kenl3, respectively, performed when switching from MMD to AMD at various points in the

computation.

In Figure 5.2 we show experiments in which the switch between MMD and AMD is changed

in 10% increments; we also zoom in at the 84-87% range where there is an abrupt transition.

Careful examination reveals that MMD is stalling when eliminating the last two to three thousand

supernodes in the quotient graph. AMD, however not only eliminates the remaining quotient

graph faster, it also does so by eliminating far less supernodes.

As the elimination progresses, not only does the quotient graph have far fewer vertices, it

also becomes increasingly connected. For pdsl0, the last 2000 supernodes are almost, but not

completely connected. This means that MMD cannot find large independent sets of vertices --

which is crucial to its efficient execution. However, there are a lot of indistinguishable nodes that
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FIGURE 5.3: Details of kenl3 when dynamically changing from MMD to AMD at different points
in the ordering. Each bar represents a different run of the software with CPU time in the vertical
direction. Each run starts with MMD and then switches to AMD when a certain percentage
of the total permutation is determined. This percentage is shown on the horizontal axis. After
the switch to AMD, the algorithms completes the ordering. There are two numbers above each
bar. The lower of the two is the number of supernodes in the quotient graph at the time MMD
algorithm cedes control to AMD. The upper number is the number of supernode eliminations
performed by AMD to complete the ordering, These two numbers are not necessarily the same
by virtue of supernode amalgamation, though the upper number can be no greater than the lower
one.
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are available and MMD is not finding them. This is because MMD does a lazy update and has a

larger set of supernodes to handle at each quotient graph update. Therefore it is too expensive

to do an exhaustive search of all possible pairs of indistinguishable supernodes. What it does

instead is check all so-called "two adjacent" supernodes. These are supernodes that are adjacent

to exactly two enodes and no other supernodes.

AMD, on the other hand, has a much smaller set of supernodes to deal with at every graph

update, and since it is a single elimination scheme all the supernodes are reachable to each other

through the most recently created enode. AMD then can afford an exhaustive search for indis-

tinguishable nodes. This strategy pays off in the end because AMD can compress approximately

the last 2000 supernodes into just under 200.

For kenl3 in Figure 5.3 the picture is quite different. Cursory examination in this case

shows that AMD’s aggressive graph compression is not paying off7, and in fact is much slower

than MMD. Because AMD is a single elimination scheme there are many more quotient graph

updates to perform, one for each eliminated supernode. MMD can reduce the quotient graph

from 26 to 18 thousand supernodes with just two quotient graph updates.

We note that in both ken13 and pdsl0 the optimum is neither MMD o1" AMD, but some

combination thereof. The intuition is that initially, when the quotient graph is very sparse and

there are large independent sets of vertices to be had, MMD is better to use. Later in the

elimination process, however, the quotient graph becomes much denser and there may not be

as many sets of independent vertices to eliminate at once. AMD is better suited for this case

especially with its more aggressive compression abilities. Of course, switching on tile percentage

of the total permutation that is completed is a crude control. It is quite possible that a more

sophisticated property of the quotient graph, or some logic built into the MinPriority object

that analyzes its behavior over the last few iterations would provide a much better reason to

switch from a multiple elimination method to an approximate one.

It might seem more natural and a better design to make the Switcher class more generic by

simply giving it two references to PriorityStrategy and letting it switch from any one strategy
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problem
8 shuttle_eddy

15 pwt
18 bcsstk35
20 bcsstk37
22 bcsstk36
23 bcsstk30
26 bcsstk32
27 struct3
29 bcsstk33
31 bcsstk31
33 nasasrb
39 3dtube
40 cfdl
41 gearbox
42 cfd2
geometric mean
mean

size
AMD AMMF Metis BEND

1.00 .92 .96 .86
1.01 .96 .79 .85
1.00 .99 1.15 1.02
1.00 .96 1.12 .9.5
1.00 .99 1.11 .93
1.00 .93 1.19 1.04

.98 .93 1.10 .97

.99 .94 .86 .83

.99 .90 .87 .70
1.01- .85 .86 .81

.99 .84 .85 .78
1.01 .90 .58 .56
1.00 .73 .57 .56
.99 .92 .72 .72
.99 .76 .43 .43

1.00 .90 ,84 .78
1.00 .90 .88 .80

work
AMD AMMF Metis BEND

1.00 .77 .91 .71
1.06 .89 .51 .63
1.01 .92 1.29 1.00
1.00 .87 1.24 .86
1.00 .94 1.15 .79
1.00 .77 1.33 1.06
.94 .78 1.15 .86
.99 .83 .62 .57
.98 .72 .67 .44

1.04 .67 .50 .49
.98 .66 .69 .55

1.02 .80 .29 .30
1.01 .49 .37 .28

.98 .79 .41 .38
.96 .57 .19 .16

1.00 .75 .65 .54
1.00 .76 .76 .60

TABLE 5.13: Comparison of Spindle’s greedy algorithms vs. reported nested dissection algo-

rithms. All numbers are normalized by Spindle’s MMD ordering.

to another by forwarding the messages it receives to the current strategy. In this case, however,

when the strategy switches it would be necessary to purge the PriorityQueue and recompute

all the priorities of all the outstanding supernodes. This would incur some additional overhead,

but would require no foreseeable changes in the architecture of the software. Currently, there

is no need to purge and recompute for all outstanding supernodes at the moment the strategy

switches because AMD uses upper bounds on the degree that MMD uses. Any supernodes in

the priority queue at that time are more precise than AMD would compute anyway, so there is

no problem leaving them in.

5.2.4 Comparison against Nested Dissection

Recently, attention has been redirected to divide-and-conquer type fill-reducing algorithms using

various forms of nested dissection. In his Ph.D. thesis, Bornstein [14] presented a comparison of

AMD [2], Metis [48], BEND [44], for a set of matrices. In Table 5.13 we reproduce matrices that

are common to both Bornstein’s and our test set.

Even compared with the newest greedy fill-reducing algorithms, divide-and-conquer imple-

mentations provide superior permutations to reduce storage and work requirements. The cost
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to perform these nested dissection orderings, remains larger than th6’greedy algorithms, both in

terms of cpu time and storage. The latter is due to the fact that many nested-dissection codes

use multi-level strategies that requires significant amounts of memory.
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One of the most encouraging signs of a well-engineered code is its adaptability to new circum-

stances. Indeed, extensibility was a primary design goal that we stated back in Section 2.2. In

our work, we have extended the code in directions that we had not originally planned, but where

circumstances (or opportunity) had presented itself. We pay particular attention to how well

the software adapted, and how much modification was required. Our efforts run the gamut of

software evolution; from deriving a new sub-class and plugging it in, to modifying or rewriting

certain objects. Obviously the less original code that was modified, the better -- and more

successful -- for us.

In Section 6.1 we extend our symmetric ordering algorithms to provide orderings for general

sparse matrices. This section introduces additional notation for unsymmetric matrices, a discus-

sion of some established practices, a column-oriented minimum fill algorithm (Section 6.1.1) and

a novel generalization for the Sloan algorithm (Section 6.1.2).

In Section 6.2 we introduce some ordering algorithms with additional constraints. First we

discuss a multi-stage, greedy fill reducing ordering (Section 6.2.1). This algorithm is a critical

part of any nested dissection ordering where the graph that has already been partitioned, and

now the subdomains are sufficiently small to do a greedy fill reducing ordering on each subdo-

main, respecting partition boundaries. Then we discuss a block-wavefront reducing algorithm

(Section 6.2.2) where we want to minimize the global wavefront, but are subject to partition

constraints where the partitions themselves are ordered and all vertices on a certain partition

must be exhausted before proceeding to another.

6.1 Unsymmetric Orderings

Until this point, we have always made the assumption that we are dealing with a large, sparse,

structurally symmetric matrix A, and wanted a single permutation P to symmetrically permute

the system PAPT. Let us now assume that the matrix is not structurally symmetric, indeed it
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may not even be square. In this case, we would require separate row’and column permutations

Pr, Pc.

In practice, unsymmetric orderings are avoided by making the problem symmetric.

For square matrices that are "almost" symmetric, one can perform a symmetric ordering on

the sparse structure of A + AT. The resulting permutation is applied to both the rows and

columns of A. This process makes the ordering algorithm form a symmetric permutation that

is an upper bound for the underlying unsymmetric one. Matlab’s symrcm() function actually

operates on the nonzero structure of A + AT [38].

For rectangular problems where A can have more rows than columns, one can perform a

symmetric ordering on the sparsity structure of ATA, which is symmetric but decidedly less

sparse. The resulting permutation can then only be applied as a column permutation. This is

effectively what is done in Matlab’s colmmd() function [38] though tile product, ATA, is not

explicitly formed.

For Sections 6.1.1-6.1.2 we will consider an example unsymmetric matrix shown in Fig-

ure 6. l(a).

6.1.1 Column Minimum Fill

To adapt Spindle to perform a column minimim fill ordering for unsymmetric problems, we have

a few choices.

We could derive a ¢olIntersectionGraph class from our generic Graph class and make its

constructor form the graph of ATA explicitly. Then we simply pass the graph to the existing

NinPriorityEngine class and associate apparatus and return the result.

Alternatively, we can take an approach similar to Davis and Duff [18, 19] where we extend the

OuotientGraph class to implicitly represent the graph of ATA. To see how this second technique

works, consider the hypergraph model in Figure 6.1(d). Instead of visualizing the black circles

as the hub of a hyperedge, interpret them as enodes in a quotient graph. Once these initial
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FIGURE 6.1: (a)An example square, unsymmetric matrix. (b) Nonzero structure ATA. (c)
Its column intersection graph. (d) Its hypergraph (white circles for columns, black circles 
rows).

conditions have been set, the regular MinPriorityEngine will produce an elimination order that

we can use as the column fill-reducing ordering.

Although this second approach is more complicated to implement, there are considerable

storage savings by using the implicit representation. This representation requires O(nnz(A))

storage. Worst case for the explicit ColIntersectionGraphis O(nnz2 (A)) (See Figure 2.1). 

we consider the implicit approach to be superior, even though setting up its initial conditions

will require modifications to existing code.

The critical problem is constructing an appropriate {~uotientGraph. The current implemen-

tation assumes that it is always constructed from a graph of all supernodes and no enodes. The

simplest solution is to create a HyperGraph class, and pass it (via a pointer to Graph) to the exist-

ing constructor of a [luotientGraph class. With this solution, the [luotientGraph class (having

no knowledge of hypergraphs) will interpret both vertices and hyperedge hubs as supernodes.

Then, since no hyperedge hubs-turned-supernodes are adjacent, they form an independent set

which can all be eliminated before updating the quotient graph. After updating the quotient
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graph, the quotient graph is in the initiM state we want that implicitly represents ATA. The

problem is that the quotient graph will incorrectly report the number of supernodes, the number

of eliminations, etc. since from its point of view the initial number of supernodes included the

hyperedge-hubs. A second option is adding a feature to the 0uotientGraph class to recognize

enodes that exist a priori. This can probably be done via some additional constructor using

a HyperGraph or some similarly distinctive graph from an unsymmetric problem. We propose

modifying the original Quotientgraph because its internal state is too complex to easily change

its behavior consistently in a derived class.

Depending on how successful we are in encapsulating the details of the symmetry/unsymmetry

in the QuotientGraph, we may need to fine-tune some details in the MinPriorityEngine. This

is especially so if we build the unsymmetric quotient graph in the piecemeal fashion we first

described. We are confident if we take our time with the quotientGraph, the ordering engine

can remain untouched. This also maims sense fl’om very broad perspective since algorithm is the

same whether the underlying matrix is symmetric or not.

6.1.2 Unsymmetric Sloan

Unlike the fill reduction problem where current state-of-art simply performs a colmnn order-

ing, we can provide a wavefront-reducing row and column ordering for unsymmetric matrices.

Furthermore, we can do so without modifying the SloanEngine at all.

Before progressing further, we need to define the unsymmetric generalizations of some tin’ms

we introduced in Section 3.2.1.

We start by generalizing the definition of a row width for the lower triangle of a general sparse

square matrix.

Definition 6.1 Consider a large, sparse, square matrix, A. The row width for the i th row,

rw~(A), is the difference between i and the column indez o/ the first nonzero entry of the row, or
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rwi(A) = ma× .(i - 
j:alj:fiO or j=z

We introduce a similar concept for the upper triangle of a general sparse, square matrix.

Definition 6.2 Consider a large, sparse, square matrix, A. The column height for the ith

column, ehi(A), is the difference between i and the row index of th, e first nonzero entry of the

column, or the diagonal (whichever comes first).

ehj(A) (j - i)
i:aljs£O or i=3

Remark 6.1 For" any sparse, square matrix, A,

chi (A) = rwi T)

We now define terms like bandwidth and envelope for square, unsymmetric matrices.

Definition 6.3 Given a large, sparse, square, unsymmetric matrix, A, the bandwidth of A is

the sum of the maximum row width and the maximum column height

bw(A) = ma× rw~(A) max ch j(A)
l<i<n l<_j<n

Definition 6.4 Given a large, sparse, square, unsymmetrie matrix, A, the envelope o.f A is the

sum of the envelopes of both L + LT and the transpose of U + UT.

Remark 6.2 Given a large, sparse, square, unsymmetric matrix, A, the size of the envelope of

A is the sum of the row widths and column heights:

]env(A)] = E rwi(A) + E chj(A)
i:l j=l
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Example of LU factorization. The circles represent original nonzero entries, the
crosses represent fill entries.

These generalized terms seem to have the unfortunate side effect of doubling the values when

applied to symmetric matrices. In fact, we have implicitly halved the terms for the symmetric

case since the underlying system is symmetric and we can store, factor, and work with them in

half the space. Matrices that are only structurally symmetric can only sometimes take advantage

of this economy so the application of these terms depends on the context.

We need to define the wavefront of an unsymmetric matrix. In Section 3.2.1 we defined

wavefront of a symmetric matrix through Cholesky factorization. For the unsymmetric matrix,

we need to first understand LU factorization, of which Cholesky is a symmetric variant.

We provide an example of LU factorization of the unsymmetric matrix in Figure 6.2. This is

on the same unsymmetric matrix we first showed in Figure 6.1. The LU factorization decomposes

a square matrix A into a lower triangular matrix L, and an upper triangular matrix U such that

the product of L and U is equal to A1. In this particular example, we form the factors L and U

in place. For detailed information about LU factorization, see Li [54].

Here, when factoring the i th rOW and column, we consider active ~ows and columns. An active

row for column i is any of the last ~ - i rows that has a nonzero entry in some kth column where

k < i. Similarly, an active column for row i is any of the last n - i columns that has a nonzero

entry in some ]~th rOW where h < i. When factoring the i th i’ow and colunm of an unsymmetric

matrix, the number of active rows and columns (including both the th row and column) i s c alled

the i TM wavefront of A, wf.i(A).

1We will assume for simplicity that the factorization is numerically stable and no pivoting is required.



161

Observation 6.1 The sum of the waveffonts of a sparse, square, unsymmetric ’matrix equals the

size of the envelope, plus 2n.

Iwfi(A)] = n+ rwi(A)+n+~chj(A)
i:1 i~1 i=1

2n + lenv(A)l

Definition 6.5 The i th row wavefront of a sparse, square, unsymmetric matrix A, wfr,i(A) is

the contribution to the wav@vnt by all the active columns on row i and row i itself. Similarly

the i th column wavefront, wfc,i(A) is the contribution to the wav@’ont by all the active rows on

column i and column i itself.

Observation 6.2 Given a sparse, square symmetric matrix A, let AL be the lower triangle of

A and Au be the upper triangle of A. Then

wfr,i(A) = wh(AL + A~) 

and

wfc,i(A) = wfi(Au T)

Now consider that we want to perform a wavefront reducing ordering on an unsymmetric

matrix. An interesting way to accomplish this is to construct the hypergraph of the matrix.

Then convert all the hyperedge hubs to vertices themselves, producing a graph of 2n vertices,

where half of the vertices correspond to vertices in the hypergraph (and columns in the matrix)

and the other half of the vertices correspond to hyperedge hubs in the hypergraph (and rows in

the matrix). In this new graph of 2n vertices, we want to number adjacent pairs of vertices such

that the number of unnumbered neighbors of all numbered vertices are minimized.

The number of as yet unnumbered vertices adjacent to a numbered vertex (plus two for the

two just numbered) equals the wavefront at that step. ~rthermore, the number of such vertices

that originate from a vertex in the hypergraph (plus one) equals the column wavefront and
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the number of such vertices that originate from a hyperedge hub inthe hypergraph (plus one)

equals the row wavefront. Lastly, since the graph induced by this hypergraph is bipartite and

we restrict ourselves to numbering adjacent pairs, we are guaranteed to generate the row and

column permutations evenly and that there will be nonzeros along the diagonal of the permuted

system.

Instead of writing a new algorithm to detect and removed roached pairs, we can simply run

the regular SloanEngine the graph of 2n vertices. Once we get a permutation vector of length 2n,

we examine the order in which vertices are numbered. If the first vertex numbered corresponds to

a vertex in the original hypergraph, we put that into one queue. If it corresponds to a hyperedge

hub in the original hypergraph, we put it into another queue. Then we repeat with the rest of

the vertices in the graph the Sloan algorithm numbered. When we are done, the order that the

hypergraph vertices appear in the queue becomes the column permutation and the order that

hyperedge hubs appear in the second queue determines the row permutation.

Although this new application of Sloan doesn’t exactly satisfy the constraint of numbering

adjacent pairs, we expect it to work well in practice. There is no need to modify exiting code,

simply derive a HyperGraph from the Graph class, and add a driver to separate the larger per-

mutation into the row and column permutations. Since the UyperGraph is also bipartite it is

immune to the graph compression that the SloanEngine inherits from 0rderingAlgorithra.

6.2 Constrained Orderings

Ordering and partitioning problems are strongly related. An ordering problem can be seen as an

n-way partition. With these constrained ordering problems, tile graph is already partitioned into

subdomains. To preserve the partitioning, the ordering algorithm must order each subdomain

completely before moving to another, while still minimizing some global property.
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6.2.1 Multi-Stage Fill-Reducing Orderings

Nested dissection ordering is a divide-and-conquer approach to the fill reduction problem. It re-

cursively selects a vertex separator that, upon removal, separates the graph into two independent

subgraphs. By numbering the vertices in the separator last, it ensures that no fill edges can occur

between the two subgraphs. This dissection then recurs on each subdomain until they become

sufficiently small. At this point, there is a large collection of small, independent subgraphs that

are yet unnumbered. These are typically ordered with MMD. Additionally, performing a MMD

ordering on the vertex separators can also improve the overall reduction in fill.

Metis [48] as well as many other partitioning codes use GENMMD or some equivalent to

order their subdomains. However, this requires actually generating all of these snbdomains as

independent graphs, running the algorithm, and then combining the results. One exception is

SPOOLES [4], which has its own Multi-Stage Minimum Degree (MSMD) implementation.

We now investigate how we could add this feature to our existing code. At first glance, it

would seem that that all we need to do is derive a new class from MinPriorityEngine, add an

array to store the subdomain each vertex is in, and override the execute () method to produce

the appropriate ordering. Although the entire MinPrierityEngine class is over 500 lines of

code, the body for tile execute() method is less than a page. There is, however, one problem:

supernode amalgamation. It could happen that during elimination two supernodes from two

different domains become indistinguishable. In this case, we need to prevent them from being

amalgamated as this would violate the partition restrictions.

6.2.2 Block Wavefront Orderings

Running a wavefront reducing ordering in subdomains of a partitioned system can have many

applications, including incomplete factorization preconditioning, and optimizing for cache per-

formance on the deep memory heirarchies of current processors.

Our SloanEngine class has the ability already to handle many more general situations than a

simple Sloan algorithm can handle. It is currently one of the most mature components in Spindle.
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Not only can it perform orderings that respect partitioning restrict{ons, it can take partition

boundaries into account. This required the PseudoDiameter and BreadthFirstSearch classes

to be augmented as well.

For instance, the BreadthFirstSearch class can start from a ~:oot node, or a set of root

nodes. It can restrict its search to only those vertices in the same domain as the root node (or

nodes). An added feature is that it can loosen this restriction to include nodes that are adjacent

to nodes in the same domain.

The PseudoDiameter class can take advantage of these partition restrictions and select a pair

of vertices that are the farthest apart in their own subdomain.

In a partitioned ordering, we may not know where we want to start numbering vertices in a

particular domain, but we want to ensure that all the boundary vertices are numbered last. This

can be accomplished with the SloanEngine class. We simply mark all the boundary nodes as

end nodes. The SloanEngine uses a BreadthFirstSearch object (which can start from multiple

roots) to generate the global component of the priority function, and to find start nodes. Then

the ordering object can artificially deflate the initial priority of all the end vertices so low that

all other vertices are guaranteed to be numbered before they are.

Another interesting application for these enhanced ordering engines comes from an interface

problem in finite elements [68]. We have a mass with linear properties across most of the domain,

but there are non-linear physics occuring at one face where it is interacting with anther body.

This gives rise to a symmetric block system

where Kll is the linear domain, K22 is the non-linear interface. The task now is to generate local

orderings on Kll and K22 that reducing tile global wavefront.
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(a)

(b) (c)

FIGURE 6.3: Constrained Wavefront Reduction Example. The partitioned graph (a) is broken
into two graphs: (b) and (c), which can be ordered independently.

Consider the simple example shown in Figure 6.3(a). After numbering all the vertices in 

the boundary nodes of K22 form the wavefront. Since we know this wavefront at one point, we

can create two Sloan ordering engines to compute the orderings before and after that wavefront.

The first graph is made up of all the vertices from the Kll block of the matrix and boundary

vertices of the K22 block (see Figure 6.3(b)). These boundary vertices are set as the end nodes

of the wavefront reducing ordering and we set their priority such that we are guaranteed they

are numbered last. Then we run the SloanEngine on this subgraph, and examine the order in

which all the vertices in Kll were numbered.

The second graph is strictly made up of all the vertices in the K22 block. The boundary

vertices are labeled as start nodes, but we do not need to force them to be numbered first. The

reason is that once a vertex is in the wavefront, it never leaves until its numbered. We take the

order in which these vertices were numbered, and append that to the end of the ordering for the

Ku block.
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Because of the maturity of the SloanEngine class, we did not need’ to make any modifications

to the class itself. We needed only to build a simple driver to construct the two subgraphs, or-

chestrate the two SloanEngine classes, and rebuild the total ordering from the two permutations

on the subgraphs.

6.3 Summary

The possibilities for further extension abound. Even more important is understanding how

extensible the current design is. Now that we have explained "what" changes we made, we

examine "how" the changes were made and where the design failed to be extensible.

The easiest example of extensibility is where it was intentionally designed into the code:

specifically the ShrinkingStrategy hierarchy for the PseudoDiameter algorithic class (Sec-

tion 4.3.2), and the PriorityStrategy hierarchy for the MinPriorityEngine algorithmic class

(Section 4.3.1). However, achieving extensibility where it was expected, and achieving a generally

extensible code are two different matters. Here, we will focus on the latter.

For both tile unsymmetric Sloan and the column minimum fill algorithms, there were no

changes needed to any algorithmic component. Additional classes HyperGraph and ColIntersectGraph

were derived from the Graph class, and the QuotientGraph needed some modification to handle

a special case of initial enodes. New drivers were implemented to extract the results of the algo-

rithm class and reformat it to a solution for an unsymmetric problem. We felt this to be good

cases of software extensibility.

For the partitioned fill reducing ordering, we needed rewrite parts of the MinPriorityEngine

algorithm which orchestrates the interaction between its three main member objects. Adding

this functionality was not difficult, but it would have been better if we could simply derive an

enhanced algorithmic class. But we are inclined to believe that this special case is probably

an intrinsic part of a general algorithmic object. Looking back on the rest of SpiuSle, we find

that several algorithmic objects, including BreadthFirstSearch, PseudoDiamter, gCNEngine

and SloanEngine all have partition restrictions built-in to the base class. In this case, we
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should have identified the trend and built partition restrictions in{o the MinPriortiyEngine

at the beginning. The OuotientGraph also needed to be modified to prevent almagamating

indistinguishable supernodes that resided on different subdomains. This was not technically

difficult.

Our solution to the block-wavefront reducing ordering algorithm is more of an example of code

reuse and flexibility than extensibilty in the strict sense that we defined in Section 2.2. Here we

created a collection of SloanEngine classes and set them up to do independent problems. The

code we wrote to divide the problem, and recombine the partial results from the SloanEngine

classes is all new. The algorithmic classes themselves are not exhibiting a new behavior, but are

being used in a different way.

As we said before, acheiving extensibility where it was expected, and achieving a generally

extensible code are two very different things. With Spin~[e, we feel that we have accomplished

something in the middle. We are generally pleased with the extensions that we have been able to

incorporate efiqciently. We also acknowledge that there are practical limits to how far the code

can be extended. The extensions presented in this chapter are, after all, only a small subset of

all the extensions possible; and were chosen because we felt they had the highest probability of

success.
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Better tools promote better science. And improvments in science allow better tools. While this

symbiotic relationship is very obvious in areas such as bio-technology, chemistry, astronomy, and

physics, it is often overlooked -- or underestimated -- in computer science. It is not enough

to have either cutting edge algorithms or state-of-the-art software engineering. Today’s research

requires both.

We spent time analyzing and understanding heuristics for two well-known NP-hard problems.

We augmented existing algorithms and in some cases designed new algorithms. We carefully

implemented these algorithms in efficient and robust object-oriented software. Then, we used

these new tools in extending our knowledge; solving additional problems in new and interesting

ways.

The envelope/wavefront reduction problem and its more general form as a sequencing prob-

lem has a wide variety of applications: scientific computing, cache performance tuning, spatial

databases, and genomics to name a few. Our work has produced asymptotically faster algorithms

that reduce the envelope and wavefront better than any other known heuristic. The flexible im-

plementation allows us to generate these orderings on a variety of architectures and integrate with

larger pieces of software such as PETSc and Matlab. It also allows us to solve related problems of

constrained envelope/wavefront reduction and unsymmetric envelope/wavefront reduction with

minimal additions to the existing code.

The fill reduction problem is a classic problem in sparse matrix factorization that has been

researched and improved upon for well over 20 years. Our research includes a comprehensive

complexity analysis for a family of related heuristics. Our software implements the broadest

range of these heuristics for any known implementation, free or commercial. We use the analysis

and the software to find weaknesses in the current heuristics and demonstrate a novel polymorphic

algorithm that has the potential to adapt dynamically as the ordering progresses, l~hrthermore,
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we were able to implement all of this flexible, object-oriented software to execute within a small

constant of native Fortran77 code.

There are many additional research projects that readily extend from Spilli}le. On the algo-

rithmic side, the next logical problem to implement would be a full partitioning pacl~age. This

could be used on its own or in conjunction with Sloan or MinPriority for various nested dissection

orderings. On the software side, because sparse matrix reordering is a service provided to much

larger solver codes, and because of Spina[e’s inherent object-oriented nature, extending Spina[e’s

implementation to include distributed component technologies is tempting.

It is our sincere desire to continue to develop and maintain Spina[e for some time to come. It

provides many useful services for a wide range of applications and we hope to have it bundled

within complete solver paclcages in the near future. Sj0inb[e has proven a useful framework for

algorithmic research and a significant contribution to sparse matrix computations.
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